High performance nanostructured bismuth oxide-cobaltite as a durable oxygen electrode for reversible solid oxide cells
The high reactivity between bismuth oxide and cobaltite oxygen electrodes is a bottleneck in developing active and reliable bismuth oxide–cobaltite composite oxygen electrodes for solid oxide cells (SOCs). Herein, a Sr-free Sm0.95Co0.95Pd0.05O3−δ (SmCPd) oxygen electrode decorated with nanoscale Er0...
| Main Authors: | , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
R S C Publications
2018
|
| Online Access: | http://creativecommons.org/licenses/by/4.0/ http://hdl.handle.net/20.500.11937/66936 |
| Summary: | The high reactivity between bismuth oxide and cobaltite oxygen electrodes is a bottleneck in developing active and reliable bismuth oxide–cobaltite composite oxygen electrodes for solid oxide cells (SOCs). Herein, a Sr-free Sm0.95Co0.95Pd0.05O3−δ (SmCPd) oxygen electrode decorated with nanoscale Er0.4Bi1.6O3 (ESB) is synthesized and assembled on a barrier-layer-free Y2O3–ZrO2 (YSZ) electrolyte film. The cell with the ESB decorated SmCPd composite oxygen electrode exhibits a peak power density of 1.81 W cm−2 at 750 °C and 0.58 W cm−2 at 650 °C. More importantly, excellent operating stability is achieved in the fuel cell mode at 600 °C for 500 h, and in electrolysis and reversible modes at 750 °C for over 200 h. The results demonstrate the feasibility of applying bismuth oxide–cobaltite composite oxygen electrodes in developing high-performance and durable SOCs. |
|---|