Improved biosynthesis of silver nanoparticles using keratinase from Stenotrophomonas maltophilia R13: reaction optimization, structural characterization, and biomedical activity

© 2017 Springer-Verlag GmbH Germany, part of Springer Nature In the present study, keratinase from Stenotrophomonas maltophilia R13 was used for the first time as a reducing agent for the eco-friendly synthesis of AgNPs. The keratinase produced by strain R13 was responsible for the reduction of silv...

Full description

Bibliographic Details
Main Authors: Jang, E., Son, Y., Park, S., Yoo, J., Cho, Y., Jeong, S., Liu, Shaomin, Son, H.
Format: Journal Article
Published: 2017
Online Access:http://hdl.handle.net/20.500.11937/66369
Description
Summary:© 2017 Springer-Verlag GmbH Germany, part of Springer Nature In the present study, keratinase from Stenotrophomonas maltophilia R13 was used for the first time as a reducing agent for the eco-friendly synthesis of AgNPs. The keratinase produced by strain R13 was responsible for the reduction of silver ions and the subsequent formation of AgNPs. Maximum AgNP synthesis was achieved using 2 mM AgNO 3 at pH 9 and 40 °C. Electron microscopy and dynamic light scattering analysis showed AgNPs were spherical and of average diameter ~ 8.4 nm. X-ray diffraction revealed that AgNPs were crystalline. FTIR indicated AgNPs were stabilized by proteins present in the crude enzyme solution of strain R13. AgNPs exhibited a broad antimicrobial spectrum against several pathogenic microorganisms, and the antimicrobial mechanism appeared to involve structural deformation of cells resulting in membrane leakage and subsequent lysis. AgNPs also displayed 1,1-diphenyl-2-picrylhydrazyl (IC 50 = 0.0112 mg/ml), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate radical scavenging (IC 50 = 0.0243 mg/ml), and anti-collagenase (IC 50 = 23.5 mg/ml) activities.