Transdifferentiation of myoblasts into osteoblasts - possible use for bone therapy

© 2017 Royal Pharmaceutical Society. Objectives: Transdifferentiation is defined as the conversion of one cell type to another and is an ever-expanding field with a growing number of cells found to be capable of such a process. To date, the fact remains that there are limited treatment options for f...

Full description

Bibliographic Details
Main Authors: Lin, Daphne, Carnagarin, Revathy, Dharmarajan, Arunasalam, Dass, Crispin
Format: Journal Article
Published: John Wiley & Sons Ltd. 2017
Online Access:http://hdl.handle.net/20.500.11937/63011
Description
Summary:© 2017 Royal Pharmaceutical Society. Objectives: Transdifferentiation is defined as the conversion of one cell type to another and is an ever-expanding field with a growing number of cells found to be capable of such a process. To date, the fact remains that there are limited treatment options for fracture healing, osteoporosis and bone repair post-destruction by bone tumours. Hence, this review focuses on the transdifferentiation of myoblast to osteoblast as a means to further understand the transdifferentiation process and to investigate a potential therapeutic option if successful. Key findings: The potent osteoinductive effects of the bone morphogenetic protein-2 are largely implicated in the transdifferentiation of myoblast to osteoblast. Bone morphogenetic protein-2-induced activation of the Smad1 protein ultimately results in JunB synthesis, the first transcriptional step in myoblast dedifferentiation. The upregulation of the activating protein-1 binding activity triggers the transcription of the runt-related transcription factor 2 gene, a transcription factor that plays a major role in osteoblast differentiation. Summary: This potential transdifferentiation treatment may be utilised for dental implants, fracture healing, osteoporosis and bone repair post-destruction by bone tumours.