Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells

© 2017 Elsevier B.V. La 0.6 Sr 0.2 Co 0.2 Fe 0.8 O 3-d (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the...

Full description

Bibliographic Details
Main Authors: Chen, K., He, S., Li, N., Cheng, Y., Ai, N., Chen, M., Rickard, William, Zhang, T., Jiang, S.
Format: Journal Article
Published: Elsevier SA 2018
Online Access:http://purl.org/au-research/grants/arc/DP150102025
http://hdl.handle.net/20.500.11937/62823
_version_ 1848760921990627328
author Chen, K.
He, S.
Li, N.
Cheng, Y.
Ai, N.
Chen, M.
Rickard, William
Zhang, T.
Jiang, S.
author_facet Chen, K.
He, S.
Li, N.
Cheng, Y.
Ai, N.
Chen, M.
Rickard, William
Zhang, T.
Jiang, S.
author_sort Chen, K.
building Curtin Institutional Repository
collection Online Access
description © 2017 Elsevier B.V. La 0.6 Sr 0.2 Co 0.2 Fe 0.8 O 3-d (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La 0.57 Sr 0.38 Co 0.19 Fe 0.665 Nb 0.095 Pd 0.05 O 3-d , LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm -2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm -2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.
first_indexed 2025-11-14T10:23:28Z
format Journal Article
id curtin-20.500.11937-62823
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:23:28Z
publishDate 2018
publisher Elsevier SA
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-628232023-08-02T06:39:10Z Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells Chen, K. He, S. Li, N. Cheng, Y. Ai, N. Chen, M. Rickard, William Zhang, T. Jiang, S. © 2017 Elsevier B.V. La 0.6 Sr 0.2 Co 0.2 Fe 0.8 O 3-d (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La 0.57 Sr 0.38 Co 0.19 Fe 0.665 Nb 0.095 Pd 0.05 O 3-d , LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm -2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm -2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs. 2018 Journal Article http://hdl.handle.net/20.500.11937/62823 10.1016/j.jpowsour.2017.12.066 http://purl.org/au-research/grants/arc/DP150102025 http://purl.org/au-research/grants/arc/DP150102044 http://purl.org/au-research/grants/arc/DP180100731 Elsevier SA restricted
spellingShingle Chen, K.
He, S.
Li, N.
Cheng, Y.
Ai, N.
Chen, M.
Rickard, William
Zhang, T.
Jiang, S.
Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells
title Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells
title_full Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells
title_fullStr Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells
title_full_unstemmed Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells
title_short Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells
title_sort nb and pd co-doped la0.57sr0.38co0.19fe0.665nb0.095pd0.05o3-das a stable, high performance electrode for barrier-layer-free y2o3-zro2electrolyte of solid oxide fuel cells
url http://purl.org/au-research/grants/arc/DP150102025
http://purl.org/au-research/grants/arc/DP150102025
http://purl.org/au-research/grants/arc/DP150102025
http://hdl.handle.net/20.500.11937/62823