The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature
Inclusion of ground granulated blast-furnace slag (GGBFS) with class F fly-ash can have a significant effect on the setting and strength development of geopolymer binders when cured in ambient temperature. This paper evaluates the effect of different proportions of GGBFS and activator content on the...
| Main Authors: | Deb, Partha, Nath, Pradip, Sarker, Prabir |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier Ltd
2014
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/6084 |
Similar Items
Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition
by: Nath, Pradip, et al.
Published: (2014)
by: Nath, Pradip, et al.
Published: (2014)
Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature
by: Deb, Partha, et al.
Published: (2013)
by: Deb, Partha, et al.
Published: (2013)
Strength and permeation properties of slag blended fly ash based geopolymer concrete
by: Deb, Partha, et al.
Published: (2013)
by: Deb, Partha, et al.
Published: (2013)
Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing
by: Nath, Pradip, et al.
Published: (2015)
by: Nath, Pradip, et al.
Published: (2015)
Sulphate resistance of slag blended fly ash based geopolymer concrete
by: Deb, Partha, et al.
Published: (2013)
by: Deb, Partha, et al.
Published: (2013)
Properties of fly ash based geopolymer for curing at ambient temperature
by: Nath, Pradip, et al.
Published: (2012)
by: Nath, Pradip, et al.
Published: (2012)
Improved setting and hardening of fly ash geopolymer concrete cured at room temperature
by: Nath, Pradip, et al.
Published: (2015)
by: Nath, Pradip, et al.
Published: (2015)
Geopolymer concrete for ambient curing condition
by: Nath, Pradip, et al.
Published: (2012)
by: Nath, Pradip, et al.
Published: (2012)
Drying Shrinkage of slag blended fly ash geopolymer concrete cured at room temperature
by: Deb, Partha, et al.
Published: (2015)
by: Deb, Partha, et al.
Published: (2015)
Development of Fly Ash Based Geopolymer Concrete for Ambient Curing Condition
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Effect of alkaline activator properties on the fly ash based geopolymer concrete for ambient curing condition
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Hydration Characteristics of Cement Paste Containing Supplementary Cementitious Materials
by: Elahi, A., et al.
Published: (2012)
by: Elahi, A., et al.
Published: (2012)
Development of form-stable composite phase change material by incorporation of dodecyl alcohol into ground granulated blast furnace slag
by: Memon, S., et al.
Published: (2013)
by: Memon, S., et al.
Published: (2013)
Geopolymer concrete for curing at normal temperature
by: Sarker, Prabir, et al.
Published: (2014)
by: Sarker, Prabir, et al.
Published: (2014)
Geopolymer concrete for environmental protection
by: Rangan, B. Vijaya
Published: (2014)
by: Rangan, B. Vijaya
Published: (2014)
Fracture properties of geopolymer concrete cured in ambient temperature
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Fly ash based geopolymer concrete: A review
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Effect of fly ash on the potential alkali silica reaction of ferronickel slag aggregate
by: Saha, Ashish Kumer, et al.
Published: (2017)
by: Saha, Ashish Kumer, et al.
Published: (2017)
Fracture behaviour of heat cured fly ash based geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2013)
by: Sarker, Prabir, et al.
Published: (2013)
Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature
by: Nath, Pradip, et al.
Published: (2015)
by: Nath, Pradip, et al.
Published: (2015)
Low-Calcium fly ash-based geopolymer concrete: Reinforced beams and columns
by: Sumajouw, Marthin, et al.
Published: (2006)
by: Sumajouw, Marthin, et al.
Published: (2006)
Low-Calcium fly ash-based geopolymer concrete: Long-term properties
by: Wallah, Steenie, et al.
Published: (2006)
by: Wallah, Steenie, et al.
Published: (2006)
Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete
by: Hardjito, Djwantoro, et al.
Published: (2005)
by: Hardjito, Djwantoro, et al.
Published: (2005)
Fly ash-based geopolymer concrete
by: Rangan, B. Vijaya
Published: (2008)
by: Rangan, B. Vijaya
Published: (2008)
Fracture energy of geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2012)
by: Sarker, Prabir, et al.
Published: (2012)
Workability of Self-Compacting Concrete UsingBlended Waste Materials
by: Nagaratnam, Brabha h., et al.
Published: (2014)
by: Nagaratnam, Brabha h., et al.
Published: (2014)
Towards electrode immersion control on lonmin's no 1 circular furnace
by: Georgalli, G., et al.
Published: (2008)
by: Georgalli, G., et al.
Published: (2008)
Fly ash based geopolymer concrete: structural properties
by: Sarker, Prabir
Published: (2011)
by: Sarker, Prabir
Published: (2011)
Room temperature alkali activation of fly ash: The effect of Na2O/SiO2 ratio
by: Bignozzi, M., et al.
Published: (2014)
by: Bignozzi, M., et al.
Published: (2014)
Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications
by: Rickard, William, et al.
Published: (2011)
by: Rickard, William, et al.
Published: (2011)
Experimental and analytical investigation on flexural behaviour of ambient cured geopolymer concrete beams reinforced with steel fibers
by: Tran, Tung, et al.
Published: (2019)
by: Tran, Tung, et al.
Published: (2019)
Geopolymer Concrete Columns under Combined Axial Load and Biaxial Bending
by: Rahman, Muhammad, et al.
Published: (2011)
by: Rahman, Muhammad, et al.
Published: (2011)
Resistance to permeation of high strength concrete containing fly ash
by: Nath, Pradip, et al.
Published: (2010)
by: Nath, Pradip, et al.
Published: (2010)
Utilization of fly ash in construction industry
by: Barbhuiya, Salim
Published: (2014)
by: Barbhuiya, Salim
Published: (2014)
Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation
by: Temuujin, Jadambaa, et al.
Published: (2010)
by: Temuujin, Jadambaa, et al.
Published: (2010)
Characterisation of various fly ashes from Australia and Mongolia and their utilisation for preparation of Geopolymers with advanced applications
by: Jadambaa, T., et al.
Published: (2012)
by: Jadambaa, T., et al.
Published: (2012)
Geopolymer Concrete Applications
by: Rangan, Vijaya
Published: (2014)
by: Rangan, Vijaya
Published: (2014)
Durability of Fly Ash Geopolymer Concrete in a Seawater Environment
by: Olivia, Monita, et al.
Published: (2011)
by: Olivia, Monita, et al.
Published: (2011)
Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2014)
by: Sarker, Prabir, et al.
Published: (2014)
Improvement of Durability and Service Life of Concrete Using Class F Fly Ash
by: Nath, Pradip, et al.
Published: (2011)
by: Nath, Pradip, et al.
Published: (2011)
Similar Items
-
Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition
by: Nath, Pradip, et al.
Published: (2014) -
Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature
by: Deb, Partha, et al.
Published: (2013) -
Strength and permeation properties of slag blended fly ash based geopolymer concrete
by: Deb, Partha, et al.
Published: (2013) -
Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing
by: Nath, Pradip, et al.
Published: (2015) -
Sulphate resistance of slag blended fly ash based geopolymer concrete
by: Deb, Partha, et al.
Published: (2013)