Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
Li4Ti5O12/tin phase composites are successfully prepared by cellulose-assisted combustion synthesis of Li 4Ti5O12 matrix and precipitation of the tin phase. The effect of firing temperature on the particulate morphologies, particle size, specific surface area and electrochemical performance of Li 4T...
| Main Authors: | Cai, R., Yu, X., Liu, X., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier SA
2010
|
| Online Access: | http://hdl.handle.net/20.500.11937/6060 |
Similar Items
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery
by: Yuan, T., et al.
Published: (2009)
by: Yuan, T., et al.
Published: (2009)
Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance
by: Yuan, T., et al.
Published: (2010)
by: Yuan, T., et al.
Published: (2010)
Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries
by: Zhang, Z., et al.
Published: (2017)
by: Zhang, Z., et al.
Published: (2017)
A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives
by: Zhao, B., et al.
Published: (2015)
by: Zhao, B., et al.
Published: (2015)
Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor
by: Zhang, D., et al.
Published: (2009)
by: Zhang, D., et al.
Published: (2009)
Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
by: Zhang, M., et al.
Published: (2014)
by: Zhang, M., et al.
Published: (2014)
Appraisal of carbon-coated Li4Ti5O12 acanthospheres from optimized two-step hydrothermal synthesis as a superior anode for sodium-ion batteries
by: Sha, Y., et al.
Published: (2017)
by: Sha, Y., et al.
Published: (2017)
Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization
by: Wan, Z., et al.
Published: (2012)
by: Wan, Z., et al.
Published: (2012)
Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation
by: Yuan, T., et al.
Published: (2010)
by: Yuan, T., et al.
Published: (2010)
SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries with enhanced cyclability.
by: Jiang, W., et al.
Published: (2016)
by: Jiang, W., et al.
Published: (2016)
Mechanical properties of Li-Sn alloys for Li-ion battery anodes: A first-principles perspective
by: Zhang, P., et al.
Published: (2016)
by: Zhang, P., et al.
Published: (2016)
Enhancing Fast-Charge Capabilities in Solid-State Lithium Batteries through the Integration of High Li0.5La0.5TiO3 (LLTO) Content in the Lithium-Metal Anode
by: Cao, Chencheng, et al.
Published: (2023)
by: Cao, Chencheng, et al.
Published: (2023)
Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic sn and graphite oxide: An outstanding anode material for lithium-ion batteries
by: Ye, F., et al.
Published: (2014)
by: Ye, F., et al.
Published: (2014)
Electrochemical Characterization Of Lithium Vanadium Oxide Anode With Agar Binder In Aqueous Rechargeable Lithium Ion Batteries
by: Lease, Jacqueline
Published: (2018)
by: Lease, Jacqueline
Published: (2018)
Spinel LiMn2O4 cathode and carbonaceous anode material for electrochemical energy storage lithium-ion battery
by: Zahoor, Ahmed
Published: (2021)
by: Zahoor, Ahmed
Published: (2021)
Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
by: Gao, X., et al.
Published: (2015)
by: Gao, X., et al.
Published: (2015)
First-Principles Study on the Mechanical Properties of Lithiated Sn Anode Materials for Li-Ion Batteries
by: Zhang, Panpan
Published: (2019)
by: Zhang, Panpan
Published: (2019)
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
A twins-structural Sn@C core–shell composite as anode materials for lithium-ion batteries
by: Wang, Y., et al.
Published: (2016)
by: Wang, Y., et al.
Published: (2016)
Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Sandwich-like CNTs@SnO2/SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries
by: Zhang, J., et al.
Published: (2016)
by: Zhang, J., et al.
Published: (2016)
Stress-strain relationships of LixSn alloys for lithium ion batteries
by: Gao, X., et al.
Published: (2016)
by: Gao, X., et al.
Published: (2016)
Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries
by: Mao, J., et al.
Published: (2015)
by: Mao, J., et al.
Published: (2015)
In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2015)
by: Lin, Q., et al.
Published: (2015)
Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries
by: Feng, Y., et al.
Published: (2015)
by: Feng, Y., et al.
Published: (2015)
A hierarchical Zn2Mo3O8 nanodots–porous carbon composite as a superior anode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries
by: Jiang, X., et al.
Published: (2015)
by: Jiang, X., et al.
Published: (2015)
Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance
by: Yuan, T., et al.
Published: (2009)
by: Yuan, T., et al.
Published: (2009)
Optimization of SnO2 Nanoparticles Confined in a Carbon Matrix towards Applications as High‐Capacity Anodes in Sodium‐Ion Batteries
by: Wei, S., et al.
Published: (2018)
by: Wei, S., et al.
Published: (2018)
Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
by: Liu, H., et al.
Published: (2011)
by: Liu, H., et al.
Published: (2011)
Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries
by: Hou, X., et al.
Published: (2014)
by: Hou, X., et al.
Published: (2014)
Investigations on the Influence of Sm3+Ion on the Nano TiO2 Matrix as the Anode Material for Lithium Ion Batteries
by: Abhilash, K. P., et al.
Published: (2017)
by: Abhilash, K. P., et al.
Published: (2017)
Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis
by: Gu, P., et al.
Published: (2010)
by: Gu, P., et al.
Published: (2010)
Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries
by: Yao, L., et al.
Published: (2014)
by: Yao, L., et al.
Published: (2014)
A mechanism study of synthesis of Li4Ti5O 12 from TiO2 anatase
by: Yuan, T., et al.
Published: (2010)
by: Yuan, T., et al.
Published: (2010)
Similar Items
-
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013) -
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011) -
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016) -
One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance
by: Sha, Y., et al.
Published: (2016) -
Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
by: Sha, Y., et al.
Published: (2013)