Detecting change in dynamic process systems with immunocomputing
The natural immune system is an adaptive distributed pattern recognition system with several functional components designed for recognition, memory acquisition, diversity and self-regulation. In artificial immune systems, some of these characteristics are exploited in order to design computational s...
| Main Authors: | , , |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier
2007
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/6021 |
| _version_ | 1848744958257790976 |
|---|---|
| author | Yang, X. Aldrich, Chris maree, C. |
| author_facet | Yang, X. Aldrich, Chris maree, C. |
| author_sort | Yang, X. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | The natural immune system is an adaptive distributed pattern recognition system with several functional components designed for recognition, memory acquisition, diversity and self-regulation. In artificial immune systems, some of these characteristics are exploited in order to design computational systems capable of detecting novel patterns or the anomalous behaviour of a system in some sense. Despite their obvious promise in the application of fault diagnostic systems in process engineering, their potential remains largely unexplored in this regard. In this paper, the application of real-valued negative selection algorithms to simulated and real-world systems is considered. These algorithms deal with the self–nonself discrimination problem in immunocomputing, where normal process behaviour is coded as the self and any deviations from normal behaviour is encoded as nonself. The case studies have indicated that immunocomputing based on negative selection can provide competitive options for fault diagnosis in nonlinear process systems, but further work is required on large systems characterized by many variables. |
| first_indexed | 2025-11-14T06:09:44Z |
| format | Journal Article |
| id | curtin-20.500.11937-6021 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T06:09:44Z |
| publishDate | 2007 |
| publisher | Elsevier |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-60212017-02-28T01:30:06Z Detecting change in dynamic process systems with immunocomputing Yang, X. Aldrich, Chris maree, C. Artificial intelligence Coal Process control Froth flotation Modelling The natural immune system is an adaptive distributed pattern recognition system with several functional components designed for recognition, memory acquisition, diversity and self-regulation. In artificial immune systems, some of these characteristics are exploited in order to design computational systems capable of detecting novel patterns or the anomalous behaviour of a system in some sense. Despite their obvious promise in the application of fault diagnostic systems in process engineering, their potential remains largely unexplored in this regard. In this paper, the application of real-valued negative selection algorithms to simulated and real-world systems is considered. These algorithms deal with the self–nonself discrimination problem in immunocomputing, where normal process behaviour is coded as the self and any deviations from normal behaviour is encoded as nonself. The case studies have indicated that immunocomputing based on negative selection can provide competitive options for fault diagnosis in nonlinear process systems, but further work is required on large systems characterized by many variables. 2007 Journal Article http://hdl.handle.net/20.500.11937/6021 Elsevier restricted |
| spellingShingle | Artificial intelligence Coal Process control Froth flotation Modelling Yang, X. Aldrich, Chris maree, C. Detecting change in dynamic process systems with immunocomputing |
| title | Detecting change in dynamic process systems with immunocomputing |
| title_full | Detecting change in dynamic process systems with immunocomputing |
| title_fullStr | Detecting change in dynamic process systems with immunocomputing |
| title_full_unstemmed | Detecting change in dynamic process systems with immunocomputing |
| title_short | Detecting change in dynamic process systems with immunocomputing |
| title_sort | detecting change in dynamic process systems with immunocomputing |
| topic | Artificial intelligence Coal Process control Froth flotation Modelling |
| url | http://hdl.handle.net/20.500.11937/6021 |