Building Adaptive Tutoring Model Using Artificial Neural Networks and Reinforcement Learning

With the emergence of new technology-supported learning environments (e.g., MOOCs, mobile edu games), efficient and effective tutoring mechanisms remain relevant beyond traditional intelligent tutoring systems. This paper provides an approach to build and adapt a tutoring model by using both artific...

Full description

Bibliographic Details
Main Authors: Fenza, G., Orciuoli, F., Sampson, Demetrios
Format: Conference Paper
Published: 2017
Online Access:http://hdl.handle.net/20.500.11937/59172
Description
Summary:With the emergence of new technology-supported learning environments (e.g., MOOCs, mobile edu games), efficient and effective tutoring mechanisms remain relevant beyond traditional intelligent tutoring systems. This paper provides an approach to build and adapt a tutoring model by using both artificial neural networks and reinforcement learning. The underlying idea is that tutoring rules can be, firstly, learned by observing human tutors' behavior and, then, adapted, at run-time, by observing how each learner reacts within a learning environment at different states of the learning process. The Zone of Proximal Development has been adopted as the underlying theory to evaluate efficacy and efficiency of the learning experience.