Performance and durability of a layered proton conducting solid oxide fuel cell fueled by the dry reforming of methane
© 2017 The Royal Society of Chemistry. Catalyst layers derived from La 2 NiO 4 , LaNiO 3 and Ni/La 2 O 3 precursors were applied to a conventional Ni-based anode in a proton conducting solid oxide fuel cell (H + -SOFC) for the dry reforming of methane with CO 2 . The phase structures, microstructu...
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Royal Society of Chemistry
2017
|
| Online Access: | http://hdl.handle.net/20.500.11937/57248 |
| Summary: | © 2017 The Royal Society of Chemistry. Catalyst layers derived from La 2 NiO 4 , LaNiO 3 and Ni/La 2 O 3 precursors were applied to a conventional Ni-based anode in a proton conducting solid oxide fuel cell (H + -SOFC) for the dry reforming of methane with CO 2 . The phase structures, microstructures and catalytic activities of catalysts from the different precursors were systematically investigated. The cell performance and durability of a H + -SOFC with a catalyst layer (layered H + -SOFC) were examined. The layered H + -SOFC had higher cell performances than the conventional H + -SOFC. However, catalyst deactivation and degradation of the cell performance were observed as carbon deposition occurred on the catalyst layer due to CO disproportionation in exhaust gas at a high partial pressure of CO. The structure of carbon deposited on the catalysts was also investigated. |
|---|