Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings

© 2016, Korean Society of Steel Construction and Springer-Verlag Berlin Heidelberg.Cold-formed steel (CFS) portal frames can be a viable alternative to conventional hot-rolled steel portal frames. They are commonly used for low-rise commercial, light industrial and agricultural buildings. In this pa...

Full description

Bibliographic Details
Main Authors: Wrzesien, A., Phan, D., Lim, J., Lau, Hieng Ho, Hajirasouliha, I., Tan, C.
Format: Journal Article
Published: 2016
Online Access:http://hdl.handle.net/20.500.11937/55354
_version_ 1848759599479390208
author Wrzesien, A.
Phan, D.
Lim, J.
Lau, Hieng Ho
Hajirasouliha, I.
Tan, C.
author_facet Wrzesien, A.
Phan, D.
Lim, J.
Lau, Hieng Ho
Hajirasouliha, I.
Tan, C.
author_sort Wrzesien, A.
building Curtin Institutional Repository
collection Online Access
description © 2016, Korean Society of Steel Construction and Springer-Verlag Berlin Heidelberg.Cold-formed steel (CFS) portal frames can be a viable alternative to conventional hot-rolled steel portal frames. They are commonly used for low-rise commercial, light industrial and agricultural buildings. In this paper, the effect of stressed-skin action on the optimum design of CFS portal frames is investigated by conducting a minimum cost design optimisation on a building of span of 6 m, height-to-eaves of 3 m and frame spacing of 3 m; the effect of different number of bays are considered. For the purpose of this study, it is assumed that gables are rigid.The effect of stressed-skin action is larger for“square-shaped” buildings (i.e. when the span and length are the same on plan) and decreases as more bays are added(i.e. as the building becomes more “rectangular-shaped” on plan). The results of the minimum cost optimisation indicate that if stressed-skin action is taken into account, the cost of the internal frame can be reduced by around half for “square-shaped” buildings. It should be noted that this is a minimum cost optimisation, which is not the same as a minimum weight optimisation. It is also shown that a safe design of internal frames could be obtained by ignoring wind loads (i.e. designing the frame only for gravity loads),but this is limited to buildings having a “square-shape”.
first_indexed 2025-11-14T10:02:27Z
format Journal Article
id curtin-20.500.11937-55354
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:02:27Z
publishDate 2016
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-553542017-09-13T16:10:51Z Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings Wrzesien, A. Phan, D. Lim, J. Lau, Hieng Ho Hajirasouliha, I. Tan, C. © 2016, Korean Society of Steel Construction and Springer-Verlag Berlin Heidelberg.Cold-formed steel (CFS) portal frames can be a viable alternative to conventional hot-rolled steel portal frames. They are commonly used for low-rise commercial, light industrial and agricultural buildings. In this paper, the effect of stressed-skin action on the optimum design of CFS portal frames is investigated by conducting a minimum cost design optimisation on a building of span of 6 m, height-to-eaves of 3 m and frame spacing of 3 m; the effect of different number of bays are considered. For the purpose of this study, it is assumed that gables are rigid.The effect of stressed-skin action is larger for“square-shaped” buildings (i.e. when the span and length are the same on plan) and decreases as more bays are added(i.e. as the building becomes more “rectangular-shaped” on plan). The results of the minimum cost optimisation indicate that if stressed-skin action is taken into account, the cost of the internal frame can be reduced by around half for “square-shaped” buildings. It should be noted that this is a minimum cost optimisation, which is not the same as a minimum weight optimisation. It is also shown that a safe design of internal frames could be obtained by ignoring wind loads (i.e. designing the frame only for gravity loads),but this is limited to buildings having a “square-shape”. 2016 Journal Article http://hdl.handle.net/20.500.11937/55354 10.1007/s13296-016-6004-2 restricted
spellingShingle Wrzesien, A.
Phan, D.
Lim, J.
Lau, Hieng Ho
Hajirasouliha, I.
Tan, C.
Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings
title Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings
title_full Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings
title_fullStr Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings
title_full_unstemmed Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings
title_short Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings
title_sort effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings
url http://hdl.handle.net/20.500.11937/55354