Clustering for point pattern data

© 2016 IEEE. Clustering is one of the most common unsupervised learning tasks in machine learning and data mining. Clustering algorithms have been used in a plethora of applications across several scientific fields. However, there has been limited research in the clustering of point patterns - sets...

Full description

Bibliographic Details
Main Authors: Tran, N., Vo, Ba Tuong, Phung, D., Vo, Ba-Ngu
Format: Conference Paper
Published: 2017
Online Access:http://hdl.handle.net/20.500.11937/55340
Description
Summary:© 2016 IEEE. Clustering is one of the most common unsupervised learning tasks in machine learning and data mining. Clustering algorithms have been used in a plethora of applications across several scientific fields. However, there has been limited research in the clustering of point patterns - sets or multi-sets of unordered elements - that are found in numerous applications and data sources. In this paper, we propose two approaches for clustering point patterns. The first is a non-parametric method based on novel distances for sets. The second is a model-based approach, formulated via random finite set theory, and solved by the Expectation-Maximization algorithm. Numerical experiments show that the proposed methods perform well on both simulated and real data.