Physical activity patterns and clusters in 1001 patients with COPD
We described physical activity measures and hourly patterns in patients with chronic obstructive pulmonary disease (COPD) after stratification for generic and COPD-specific characteristics and, based on multiple physical activity measures, we identified clusters of patients. In total, 1001 patients...
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Sage Publications Ltd.
2017
|
| Online Access: | http://hdl.handle.net/20.500.11937/55204 |
| _version_ | 1848759561492627456 |
|---|---|
| author | Mesquita, R. Spina, G. Pitta, F. Donaire-Gonzalez, D. Deering, B. Patel, M. Mitchell, K. Alison, J. Van Gestel, A. Zogg, S. Gagnon, P. Abascal-Bolado, B. Vagaggini, B. Garcia-Aymerich, J. Jenkins, Susan Romme, E. Kon, S. Albert, P. Waschki, B. Shrikrishna, D. Singh, S. Hopkinson, N. Miedinger, D. Benzo, R. Maltais, F. Paggiaro, P. McKeough, Z. Polkey, M. Hill, Kylie Man, W. Clarenbach, C. Hernandes, N. Savi, D. Wootton, S. Furlanetto, K. Ng, Cindy Vaes, A. Jenkins, C. Eastwood, P. Jarreta, D. Kirsten, A. Brooks, D. Hillman, D. Sant'Anna, T. Meijer, K. Dürr, S. Rutten, E. Kohler, M. Probst, V. Tal-Singer, R. Gil, E. Den Brinker, A. Leuppi, J. Calverley, P. Smeenk, F. Costello, R. Gramm, M. Goldstein, R. Groenen, M. Magnussen, H. Wouters, E. Zuwallack, R. Amft, O. Watz, H. Spruit, M. |
| author_facet | Mesquita, R. Spina, G. Pitta, F. Donaire-Gonzalez, D. Deering, B. Patel, M. Mitchell, K. Alison, J. Van Gestel, A. Zogg, S. Gagnon, P. Abascal-Bolado, B. Vagaggini, B. Garcia-Aymerich, J. Jenkins, Susan Romme, E. Kon, S. Albert, P. Waschki, B. Shrikrishna, D. Singh, S. Hopkinson, N. Miedinger, D. Benzo, R. Maltais, F. Paggiaro, P. McKeough, Z. Polkey, M. Hill, Kylie Man, W. Clarenbach, C. Hernandes, N. Savi, D. Wootton, S. Furlanetto, K. Ng, Cindy Vaes, A. Jenkins, C. Eastwood, P. Jarreta, D. Kirsten, A. Brooks, D. Hillman, D. Sant'Anna, T. Meijer, K. Dürr, S. Rutten, E. Kohler, M. Probst, V. Tal-Singer, R. Gil, E. Den Brinker, A. Leuppi, J. Calverley, P. Smeenk, F. Costello, R. Gramm, M. Goldstein, R. Groenen, M. Magnussen, H. Wouters, E. Zuwallack, R. Amft, O. Watz, H. Spruit, M. |
| author_sort | Mesquita, R. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | We described physical activity measures and hourly patterns in patients with chronic obstructive pulmonary disease (COPD) after stratification for generic and COPD-specific characteristics and, based on multiple physical activity measures, we identified clusters of patients. In total, 1001 patients with COPD (65% men; age, 67 years; forced expiratory volume in the first second [FEV 1 ], 49% predicted) were studied cross-sectionally. Demographics, anthropometrics, lung function and clinical data were assessed. Daily physical activity measures and hourly patterns were analysed based on data from a multisensor armband. Principal component analysis (PCA) and cluster analysis were applied to physical activity measures to identify clusters. Age, body mass index (BMI), dyspnoea grade and ADO index (including age, dyspnoea and airflow obstruction) were associated with physical activity measures and hourly patterns. Five clusters were identified based on three PCA components, which accounted for 60% of variance of the data. Importantly, couch potatoes (i.e. the most inactive cluster) were characterised by higher BMI, lower FEV 1 , worse dyspnoea and higher ADO index compared to other clusters (p < 0.05 for all). Daily physical activity measures and hourly patterns are heterogeneous in COPD. Clusters of patients were identified solely based on physical activity data. These findings may be useful to develop interventions aiming to promote physical activity in COPD. |
| first_indexed | 2025-11-14T10:01:50Z |
| format | Journal Article |
| id | curtin-20.500.11937-55204 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T10:01:50Z |
| publishDate | 2017 |
| publisher | Sage Publications Ltd. |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-552042017-11-09T02:47:32Z Physical activity patterns and clusters in 1001 patients with COPD Mesquita, R. Spina, G. Pitta, F. Donaire-Gonzalez, D. Deering, B. Patel, M. Mitchell, K. Alison, J. Van Gestel, A. Zogg, S. Gagnon, P. Abascal-Bolado, B. Vagaggini, B. Garcia-Aymerich, J. Jenkins, Susan Romme, E. Kon, S. Albert, P. Waschki, B. Shrikrishna, D. Singh, S. Hopkinson, N. Miedinger, D. Benzo, R. Maltais, F. Paggiaro, P. McKeough, Z. Polkey, M. Hill, Kylie Man, W. Clarenbach, C. Hernandes, N. Savi, D. Wootton, S. Furlanetto, K. Ng, Cindy Vaes, A. Jenkins, C. Eastwood, P. Jarreta, D. Kirsten, A. Brooks, D. Hillman, D. Sant'Anna, T. Meijer, K. Dürr, S. Rutten, E. Kohler, M. Probst, V. Tal-Singer, R. Gil, E. Den Brinker, A. Leuppi, J. Calverley, P. Smeenk, F. Costello, R. Gramm, M. Goldstein, R. Groenen, M. Magnussen, H. Wouters, E. Zuwallack, R. Amft, O. Watz, H. Spruit, M. We described physical activity measures and hourly patterns in patients with chronic obstructive pulmonary disease (COPD) after stratification for generic and COPD-specific characteristics and, based on multiple physical activity measures, we identified clusters of patients. In total, 1001 patients with COPD (65% men; age, 67 years; forced expiratory volume in the first second [FEV 1 ], 49% predicted) were studied cross-sectionally. Demographics, anthropometrics, lung function and clinical data were assessed. Daily physical activity measures and hourly patterns were analysed based on data from a multisensor armband. Principal component analysis (PCA) and cluster analysis were applied to physical activity measures to identify clusters. Age, body mass index (BMI), dyspnoea grade and ADO index (including age, dyspnoea and airflow obstruction) were associated with physical activity measures and hourly patterns. Five clusters were identified based on three PCA components, which accounted for 60% of variance of the data. Importantly, couch potatoes (i.e. the most inactive cluster) were characterised by higher BMI, lower FEV 1 , worse dyspnoea and higher ADO index compared to other clusters (p < 0.05 for all). Daily physical activity measures and hourly patterns are heterogeneous in COPD. Clusters of patients were identified solely based on physical activity data. These findings may be useful to develop interventions aiming to promote physical activity in COPD. 2017 Journal Article http://hdl.handle.net/20.500.11937/55204 10.1177/1479972316687207 http://creativecommons.org/licenses/by-nc/3.0/ Sage Publications Ltd. fulltext |
| spellingShingle | Mesquita, R. Spina, G. Pitta, F. Donaire-Gonzalez, D. Deering, B. Patel, M. Mitchell, K. Alison, J. Van Gestel, A. Zogg, S. Gagnon, P. Abascal-Bolado, B. Vagaggini, B. Garcia-Aymerich, J. Jenkins, Susan Romme, E. Kon, S. Albert, P. Waschki, B. Shrikrishna, D. Singh, S. Hopkinson, N. Miedinger, D. Benzo, R. Maltais, F. Paggiaro, P. McKeough, Z. Polkey, M. Hill, Kylie Man, W. Clarenbach, C. Hernandes, N. Savi, D. Wootton, S. Furlanetto, K. Ng, Cindy Vaes, A. Jenkins, C. Eastwood, P. Jarreta, D. Kirsten, A. Brooks, D. Hillman, D. Sant'Anna, T. Meijer, K. Dürr, S. Rutten, E. Kohler, M. Probst, V. Tal-Singer, R. Gil, E. Den Brinker, A. Leuppi, J. Calverley, P. Smeenk, F. Costello, R. Gramm, M. Goldstein, R. Groenen, M. Magnussen, H. Wouters, E. Zuwallack, R. Amft, O. Watz, H. Spruit, M. Physical activity patterns and clusters in 1001 patients with COPD |
| title | Physical activity patterns and clusters in 1001 patients with COPD |
| title_full | Physical activity patterns and clusters in 1001 patients with COPD |
| title_fullStr | Physical activity patterns and clusters in 1001 patients with COPD |
| title_full_unstemmed | Physical activity patterns and clusters in 1001 patients with COPD |
| title_short | Physical activity patterns and clusters in 1001 patients with COPD |
| title_sort | physical activity patterns and clusters in 1001 patients with copd |
| url | http://hdl.handle.net/20.500.11937/55204 |