_version_ 1848759561492627456
author Mesquita, R.
Spina, G.
Pitta, F.
Donaire-Gonzalez, D.
Deering, B.
Patel, M.
Mitchell, K.
Alison, J.
Van Gestel, A.
Zogg, S.
Gagnon, P.
Abascal-Bolado, B.
Vagaggini, B.
Garcia-Aymerich, J.
Jenkins, Susan
Romme, E.
Kon, S.
Albert, P.
Waschki, B.
Shrikrishna, D.
Singh, S.
Hopkinson, N.
Miedinger, D.
Benzo, R.
Maltais, F.
Paggiaro, P.
McKeough, Z.
Polkey, M.
Hill, Kylie
Man, W.
Clarenbach, C.
Hernandes, N.
Savi, D.
Wootton, S.
Furlanetto, K.
Ng, Cindy
Vaes, A.
Jenkins, C.
Eastwood, P.
Jarreta, D.
Kirsten, A.
Brooks, D.
Hillman, D.
Sant'Anna, T.
Meijer, K.
Dürr, S.
Rutten, E.
Kohler, M.
Probst, V.
Tal-Singer, R.
Gil, E.
Den Brinker, A.
Leuppi, J.
Calverley, P.
Smeenk, F.
Costello, R.
Gramm, M.
Goldstein, R.
Groenen, M.
Magnussen, H.
Wouters, E.
Zuwallack, R.
Amft, O.
Watz, H.
Spruit, M.
author_facet Mesquita, R.
Spina, G.
Pitta, F.
Donaire-Gonzalez, D.
Deering, B.
Patel, M.
Mitchell, K.
Alison, J.
Van Gestel, A.
Zogg, S.
Gagnon, P.
Abascal-Bolado, B.
Vagaggini, B.
Garcia-Aymerich, J.
Jenkins, Susan
Romme, E.
Kon, S.
Albert, P.
Waschki, B.
Shrikrishna, D.
Singh, S.
Hopkinson, N.
Miedinger, D.
Benzo, R.
Maltais, F.
Paggiaro, P.
McKeough, Z.
Polkey, M.
Hill, Kylie
Man, W.
Clarenbach, C.
Hernandes, N.
Savi, D.
Wootton, S.
Furlanetto, K.
Ng, Cindy
Vaes, A.
Jenkins, C.
Eastwood, P.
Jarreta, D.
Kirsten, A.
Brooks, D.
Hillman, D.
Sant'Anna, T.
Meijer, K.
Dürr, S.
Rutten, E.
Kohler, M.
Probst, V.
Tal-Singer, R.
Gil, E.
Den Brinker, A.
Leuppi, J.
Calverley, P.
Smeenk, F.
Costello, R.
Gramm, M.
Goldstein, R.
Groenen, M.
Magnussen, H.
Wouters, E.
Zuwallack, R.
Amft, O.
Watz, H.
Spruit, M.
author_sort Mesquita, R.
building Curtin Institutional Repository
collection Online Access
description We described physical activity measures and hourly patterns in patients with chronic obstructive pulmonary disease (COPD) after stratification for generic and COPD-specific characteristics and, based on multiple physical activity measures, we identified clusters of patients. In total, 1001 patients with COPD (65% men; age, 67 years; forced expiratory volume in the first second [FEV 1 ], 49% predicted) were studied cross-sectionally. Demographics, anthropometrics, lung function and clinical data were assessed. Daily physical activity measures and hourly patterns were analysed based on data from a multisensor armband. Principal component analysis (PCA) and cluster analysis were applied to physical activity measures to identify clusters. Age, body mass index (BMI), dyspnoea grade and ADO index (including age, dyspnoea and airflow obstruction) were associated with physical activity measures and hourly patterns. Five clusters were identified based on three PCA components, which accounted for 60% of variance of the data. Importantly, couch potatoes (i.e. the most inactive cluster) were characterised by higher BMI, lower FEV 1 , worse dyspnoea and higher ADO index compared to other clusters (p < 0.05 for all). Daily physical activity measures and hourly patterns are heterogeneous in COPD. Clusters of patients were identified solely based on physical activity data. These findings may be useful to develop interventions aiming to promote physical activity in COPD.
first_indexed 2025-11-14T10:01:50Z
format Journal Article
id curtin-20.500.11937-55204
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:01:50Z
publishDate 2017
publisher Sage Publications Ltd.
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-552042017-11-09T02:47:32Z Physical activity patterns and clusters in 1001 patients with COPD Mesquita, R. Spina, G. Pitta, F. Donaire-Gonzalez, D. Deering, B. Patel, M. Mitchell, K. Alison, J. Van Gestel, A. Zogg, S. Gagnon, P. Abascal-Bolado, B. Vagaggini, B. Garcia-Aymerich, J. Jenkins, Susan Romme, E. Kon, S. Albert, P. Waschki, B. Shrikrishna, D. Singh, S. Hopkinson, N. Miedinger, D. Benzo, R. Maltais, F. Paggiaro, P. McKeough, Z. Polkey, M. Hill, Kylie Man, W. Clarenbach, C. Hernandes, N. Savi, D. Wootton, S. Furlanetto, K. Ng, Cindy Vaes, A. Jenkins, C. Eastwood, P. Jarreta, D. Kirsten, A. Brooks, D. Hillman, D. Sant'Anna, T. Meijer, K. Dürr, S. Rutten, E. Kohler, M. Probst, V. Tal-Singer, R. Gil, E. Den Brinker, A. Leuppi, J. Calverley, P. Smeenk, F. Costello, R. Gramm, M. Goldstein, R. Groenen, M. Magnussen, H. Wouters, E. Zuwallack, R. Amft, O. Watz, H. Spruit, M. We described physical activity measures and hourly patterns in patients with chronic obstructive pulmonary disease (COPD) after stratification for generic and COPD-specific characteristics and, based on multiple physical activity measures, we identified clusters of patients. In total, 1001 patients with COPD (65% men; age, 67 years; forced expiratory volume in the first second [FEV 1 ], 49% predicted) were studied cross-sectionally. Demographics, anthropometrics, lung function and clinical data were assessed. Daily physical activity measures and hourly patterns were analysed based on data from a multisensor armband. Principal component analysis (PCA) and cluster analysis were applied to physical activity measures to identify clusters. Age, body mass index (BMI), dyspnoea grade and ADO index (including age, dyspnoea and airflow obstruction) were associated with physical activity measures and hourly patterns. Five clusters were identified based on three PCA components, which accounted for 60% of variance of the data. Importantly, couch potatoes (i.e. the most inactive cluster) were characterised by higher BMI, lower FEV 1 , worse dyspnoea and higher ADO index compared to other clusters (p < 0.05 for all). Daily physical activity measures and hourly patterns are heterogeneous in COPD. Clusters of patients were identified solely based on physical activity data. These findings may be useful to develop interventions aiming to promote physical activity in COPD. 2017 Journal Article http://hdl.handle.net/20.500.11937/55204 10.1177/1479972316687207 http://creativecommons.org/licenses/by-nc/3.0/ Sage Publications Ltd. fulltext
spellingShingle Mesquita, R.
Spina, G.
Pitta, F.
Donaire-Gonzalez, D.
Deering, B.
Patel, M.
Mitchell, K.
Alison, J.
Van Gestel, A.
Zogg, S.
Gagnon, P.
Abascal-Bolado, B.
Vagaggini, B.
Garcia-Aymerich, J.
Jenkins, Susan
Romme, E.
Kon, S.
Albert, P.
Waschki, B.
Shrikrishna, D.
Singh, S.
Hopkinson, N.
Miedinger, D.
Benzo, R.
Maltais, F.
Paggiaro, P.
McKeough, Z.
Polkey, M.
Hill, Kylie
Man, W.
Clarenbach, C.
Hernandes, N.
Savi, D.
Wootton, S.
Furlanetto, K.
Ng, Cindy
Vaes, A.
Jenkins, C.
Eastwood, P.
Jarreta, D.
Kirsten, A.
Brooks, D.
Hillman, D.
Sant'Anna, T.
Meijer, K.
Dürr, S.
Rutten, E.
Kohler, M.
Probst, V.
Tal-Singer, R.
Gil, E.
Den Brinker, A.
Leuppi, J.
Calverley, P.
Smeenk, F.
Costello, R.
Gramm, M.
Goldstein, R.
Groenen, M.
Magnussen, H.
Wouters, E.
Zuwallack, R.
Amft, O.
Watz, H.
Spruit, M.
Physical activity patterns and clusters in 1001 patients with COPD
title Physical activity patterns and clusters in 1001 patients with COPD
title_full Physical activity patterns and clusters in 1001 patients with COPD
title_fullStr Physical activity patterns and clusters in 1001 patients with COPD
title_full_unstemmed Physical activity patterns and clusters in 1001 patients with COPD
title_short Physical activity patterns and clusters in 1001 patients with COPD
title_sort physical activity patterns and clusters in 1001 patients with copd
url http://hdl.handle.net/20.500.11937/55204