Vehicle Combustion Quality Monitoring:A scene visibility-level based non-invasive approach
Pollutants interfere with light, restrict its reflection and so impair visibility. Scene visibility level is therefore used as a measure of air quality and pollution. Treating emission efflux as "some additional noise causing visibility impairment," this work examines if the extracted visi...
| Main Author: | |
|---|---|
| Other Authors: | |
| Format: | Conference Paper |
| Published: |
IEEE Computer Society
2010
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/5426 |
| Summary: | Pollutants interfere with light, restrict its reflection and so impair visibility. Scene visibility level is therefore used as a measure of air quality and pollution. Treating emission efflux as "some additional noise causing visibility impairment," this work examines if the extracted visibility index from a thermal infrared (TIR) image can help in qualitative assessment of combustion efficiency. The thin-film regime like two dimensional TIR images of unleaded-petroleum run vehicles' exhaust-plumes were first accommodated for time and space related compositional effects. The estimated ratios of visibility indices obtained from two sequential TIR images of the same exhaust plume were compared with their respective electrochemically sensed levels of oxides of nitrogen and combustibles. Initial results suggest that visibility indices extracted from TIR images of emission efflux would help in distinguishing low from high levels of emissions. TIR images can therefore assist in qualitative assessment of engine combustion efficiency. |
|---|