Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries
A self-standing nonwoven flexible Li4Ti5O12/carbon nanofiber composite (denoted LTO/CNF) was synthesized by using a facile method involving the electrospinning fabrication of CNFs and chemical deposition of LTO over the CNF surface. Scanning electron microscopy and transmission electron microscopy a...
| Main Authors: | Zhang, Z., Deng, X., Sunarso, J., Cai, R., Chu, S., Miao, J., Zhou, W., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2017
|
| Online Access: | http://hdl.handle.net/20.500.11937/54185 |
Similar Items
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Free-standing nitrogen doped V-O-C nanofiber film as promising electrode for flexible lithium-ionbatteries
by: Chen, X., et al.
Published: (2014)
by: Chen, X., et al.
Published: (2014)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives
by: Zhao, B., et al.
Published: (2015)
by: Zhao, B., et al.
Published: (2015)
Mesoporous and Nanostructured TiO2 layer with Ultra-High Loading on Nitrogen-Doped Carbon Foams as Flexible and Free-Standing Electrodes for Lithium-Ion Batteries
by: Chu, S., et al.
Published: (2016)
by: Chu, S., et al.
Published: (2016)
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers
by: Yuan, T., et al.
Published: (2011)
by: Yuan, T., et al.
Published: (2011)
Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery
by: Yuan, T., et al.
Published: (2009)
by: Yuan, T., et al.
Published: (2009)
Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium-Oxygen Batteries
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization
by: Wan, Z., et al.
Published: (2012)
by: Wan, Z., et al.
Published: (2012)
Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation
by: Yuan, T., et al.
Published: (2010)
by: Yuan, T., et al.
Published: (2010)
Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
by: Gao, X., et al.
Published: (2015)
by: Gao, X., et al.
Published: (2015)
One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO4 nanoplates as the positive electrode material of lithium-ion batteries
by: Zhou, Yingke, et al.
Published: (2016)
by: Zhou, Yingke, et al.
Published: (2016)
Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
3D amorphous carbon and graphene co-modified LiFePO4 composite derived from polyol process as electrode for high power lithium-ion batteries
by: Wu, G., et al.
Published: (2014)
by: Wu, G., et al.
Published: (2014)
Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect
by: Jiang, S., et al.
Published: (2013)
by: Jiang, S., et al.
Published: (2013)
Appraisal of carbon-coated Li4Ti5O12 acanthospheres from optimized two-step hydrothermal synthesis as a superior anode for sodium-ion batteries
by: Sha, Y., et al.
Published: (2017)
by: Sha, Y., et al.
Published: (2017)
Facile Synthesis of a 3D Nanoarchitectured Li4Ti5O12 Electrode for Ultrafast Energy Storage
by: Zhao, B., et al.
Published: (2015)
by: Zhao, B., et al.
Published: (2015)
From Paper to Paper-like Hierarchical Anatase TiO2 Film Electrode for High-Performance Lithium-Ion Batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries
by: Jiang, X., et al.
Published: (2015)
by: Jiang, X., et al.
Published: (2015)
Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor
by: Zhang, D., et al.
Published: (2009)
by: Zhang, D., et al.
Published: (2009)
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
Binder-free a-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector
by: Sun, Y., et al.
Published: (2013)
by: Sun, Y., et al.
Published: (2013)
Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries
by: Wang, J., et al.
Published: (2013)
by: Wang, J., et al.
Published: (2013)
Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties
by: Lu, Q., et al.
Published: (2019)
by: Lu, Q., et al.
Published: (2019)
Flexible, Flame-Resistant, and Dendrite-Impermeable Gel-Polymer Electrolyte for Li�O2/Air Batteries Workable Under Hurdle Conditions
by: Zou, X., et al.
Published: (2018)
by: Zou, X., et al.
Published: (2018)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance
by: Yuan, T., et al.
Published: (2010)
by: Yuan, T., et al.
Published: (2010)
Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis
by: Gu, P., et al.
Published: (2010)
by: Gu, P., et al.
Published: (2010)
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011)
by: Wang, J., et al.
Published: (2011)
Electrolyte Engineering for Safer Lithium-Ion Batteries: A Review
by: Cao, Chencheng, et al.
Published: (2023)
by: Cao, Chencheng, et al.
Published: (2023)
A mechanism study of synthesis of Li4Ti5O 12 from TiO2 anatase
by: Yuan, T., et al.
Published: (2010)
by: Yuan, T., et al.
Published: (2010)
Advances in modeling and simulation of Li–air batteries
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Li2NiTiO4?a new positive electrode for lithium batteries: soft-chemistry synthesis and electrochemical characterization
by: PRABAHARAN, S
Published: (2004)
by: PRABAHARAN, S
Published: (2004)
Similar Items
-
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012) -
Free-standing nitrogen doped V-O-C nanofiber film as promising electrode for flexible lithium-ionbatteries
by: Chen, X., et al.
Published: (2014) -
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010) -
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013) -
A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives
by: Zhao, B., et al.
Published: (2015)