The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers

Oxygen-selective mixed ionic-electronic conducting (MIEC) ceramic membrane technology enables clean coal combustion and membrane reactor for green chemical synthesis. To be practical in these applications that involve CO2 presence, the membrane materials should have simultaneously high CO2 resistanc...

Full description

Bibliographic Details
Main Authors: Gao, J., Lun, Y., Hu, Y., You, Z., Tan, X., Wang, S., Sunarso, J., Liu, Shaomin
Format: Journal Article
Published: Elsevier 2017
Online Access:http://hdl.handle.net/20.500.11937/53749
_version_ 1848759219133612032
author Gao, J.
Lun, Y.
Hu, Y.
You, Z.
Tan, X.
Wang, S.
Sunarso, J.
Liu, Shaomin
author_facet Gao, J.
Lun, Y.
Hu, Y.
You, Z.
Tan, X.
Wang, S.
Sunarso, J.
Liu, Shaomin
author_sort Gao, J.
building Curtin Institutional Repository
collection Online Access
description Oxygen-selective mixed ionic-electronic conducting (MIEC) ceramic membrane technology enables clean coal combustion and membrane reactor for green chemical synthesis. To be practical in these applications that involve CO2 presence, the membrane materials should have simultaneously high CO2 resistance and oxygen permeation fluxes. This work probed these properties for the perovskite oxide family of La0.6X0.4FeO3-d (X=Mg, Ca, Sr, or Ba), i.e., La0.6Mg0.4FeO3-d (LMF), La0.6Ca0.4FeO3-d (LCF), La0.6Sr0.4FeO3-d (LSF), and La0.6Ba0.4FeO3-d (LBF) in the hollow fiber membrane geometry that is highly suitable for industrial application. LCF hollow fiber displayed the best balance in CO2 resistance and oxygen permeation fluxes.
first_indexed 2025-11-14T09:56:24Z
format Journal Article
id curtin-20.500.11937-53749
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:56:24Z
publishDate 2017
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-537492017-10-17T07:25:43Z The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers Gao, J. Lun, Y. Hu, Y. You, Z. Tan, X. Wang, S. Sunarso, J. Liu, Shaomin Oxygen-selective mixed ionic-electronic conducting (MIEC) ceramic membrane technology enables clean coal combustion and membrane reactor for green chemical synthesis. To be practical in these applications that involve CO2 presence, the membrane materials should have simultaneously high CO2 resistance and oxygen permeation fluxes. This work probed these properties for the perovskite oxide family of La0.6X0.4FeO3-d (X=Mg, Ca, Sr, or Ba), i.e., La0.6Mg0.4FeO3-d (LMF), La0.6Ca0.4FeO3-d (LCF), La0.6Sr0.4FeO3-d (LSF), and La0.6Ba0.4FeO3-d (LBF) in the hollow fiber membrane geometry that is highly suitable for industrial application. LCF hollow fiber displayed the best balance in CO2 resistance and oxygen permeation fluxes. 2017 Journal Article http://hdl.handle.net/20.500.11937/53749 10.1016/j.jiec.2017.04.036 Elsevier restricted
spellingShingle Gao, J.
Lun, Y.
Hu, Y.
You, Z.
Tan, X.
Wang, S.
Sunarso, J.
Liu, Shaomin
The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers
title The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers
title_full The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers
title_fullStr The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers
title_full_unstemmed The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers
title_short The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers
title_sort effect of a-site element on co2 resistance of o2-selective la-based perovskite hollow fibers
url http://hdl.handle.net/20.500.11937/53749