| Summary: | Biochar, a by-product from the fast pyrolysis of pine wood, was used as the support material for the synthesis of carbon-encapsulated iron nanoparticles. The nanoparticles were characterized for physicochemical properties by multiple morphological and structural methods (e.g., SEM, TEM, XRD, FTIR, and TPD). The Fischer-Tropsch synthesis (FTS) process was carried out to evaluate the catalytic activity of the nanoparticles on conversion of biomass-derived synthesis gas (bio-syngas) to liquid hydrocarbons. Characterization results revealed that the nanoparticles had core-shell structures with iron in situ encapsulated within a graphitic shell. Moreover, significant amounts of iron carbide (mainly Fe3C) were formed as an interface between the carbonaceous shell and the iron core. FTS tests indicated that such carbon-encapsulated iron nanoparticles possessed a high activity on conversion of bio-syngas and good selectivity towards liquid hydrocarbons (of which olefins were the dominant product). Over a 1500 h testing period, the nanoparticles showed striking stability against deactivation, with CO conversion maintained at about 95% and liquid hydrocarbon selectivity at about 68%.
|