An X-Ray-Selected Sample of Candidate Black Holes in Dwarf Galaxies

We present a sample of hard X-ray-selected candidate black holes (BHs) in 19 dwarf galaxies. BH candidates are identified by cross-matching a parent sample of ~44,000 local dwarf galaxies (M* = 3 × 10 9 M☉, z < 0.055) with the Chandra Source Catalog and subsequently analyzing the original X-ray d...

Full description

Bibliographic Details
Main Authors: Lemons, S., Reines, A., Plotkin, Richard, Gallo, E., Greene, J.
Format: Journal Article
Published: Institute of Physics Publishing 2015
Online Access:http://hdl.handle.net/20.500.11937/52411
Description
Summary:We present a sample of hard X-ray-selected candidate black holes (BHs) in 19 dwarf galaxies. BH candidates are identified by cross-matching a parent sample of ~44,000 local dwarf galaxies (M* = 3 × 10 9 M☉, z < 0.055) with the Chandra Source Catalog and subsequently analyzing the original X-ray data products for matched sources. Of the 19 dwarf galaxies in our sample, eight have X-ray detections reported here for the first time. We find a total of 43 point-like hard X-ray sources with individual luminosities L2-10 keV ~ 10 37 - 10 40 erg s-1. Hard X-ray luminosities in this range can be attained by stellar-mass X-ray binaries (XRBs) and by massive BHs accreting at low Eddington ratio. We place an upper limit of 53% (10/19) on the fraction of galaxies in our sample hosting a detectable hard X-ray source consistent with the optical nucleus, although the galaxy center is poorly defined in many of our objects. We also find that 42% (8/19) of the galaxies in our sample exhibit statistically significant enhanced hard X-ray emission relative to the expected galaxy-wide contribution from low-mass and high-mass XRBs, based on the [data] star formation rate relation defined by more massive and luminous systems. For the majority of these X-ray-enhanced dwarf galaxies, the excess emission is consistent with (but not necessarily due to) a nuclear X-ray source. Follow-up observations are necessary to distinguish between stellar-mass XRBs and active galactic nuclei powered by more massive BHs. In any case, our results support the notion that X-ray-emitting BHs in low-mass dwarf galaxies may have had an appreciable impact on reionization in the early universe.