Functional genomics-guided discovery of a light-activated phytotoxin in the wheat pathogen Parastagonospora nodorum via pathway activation
© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.Parastagonospora nodorum is an important pathogen of wheat. The contribution of secondary metabolites to this pathosystem is poorly understood. A biosynthetic gene cluster (SNOG_08608-08616) has been shown to be upregulated during...
| Main Authors: | Chooi, Y., Zhang, G., Hu, J., Muria Gonzalez, Jordi, Tran, P., Pettitt, A., Maier, A., Barrow, R., Solomon, P. |
|---|---|
| Format: | Journal Article |
| Published: |
Wiley-Blackwell Publishing
2017
|
| Online Access: | http://hdl.handle.net/20.500.11937/52118 |
Similar Items
A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum
by: Chooi, Y., et al.
Published: (2014)
by: Chooi, Y., et al.
Published: (2014)
SnPKS19 encodes the polyketide synthase for alternariol mycotoxin biosynthesis in the wheat pathogen Parastagonospora nodorum
by: Chooi, Y., et al.
Published: (2015)
by: Chooi, Y., et al.
Published: (2015)
An In planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum
by: Chooi, Y., et al.
Published: (2015)
by: Chooi, Y., et al.
Published: (2015)
Characterisation of transcriptional elements regulating
virulence during Parastagonospora nodorum infection of
wheat
by: John, Evan Johann
Published: (2021)
by: John, Evan Johann
Published: (2021)
Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem
by: Gao, Y., et al.
Published: (2015)
by: Gao, Y., et al.
Published: (2015)
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
The Velvet transcription factor PnVeA regulates necrotrophic effectors and secondary metabolism in the wheat pathogen Parastagonospora nodorum
by: Morikawa, Shota, et al.
Published: (2024)
by: Morikawa, Shota, et al.
Published: (2024)
Dissecting the role of histidine kinase and Hog1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat.
by: John, E., et al.
Published: (2016)
by: John, E., et al.
Published: (2016)
Sensitivity to three Parastagonospora nodorum necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors
by: Tan, Kar-Chun, et al.
Published: (2013)
by: Tan, Kar-Chun, et al.
Published: (2013)
Comprehensive annotation of the Parastagonospora nodorum reference genome using next-generation genomics, transcriptomics and proteogenomics
by: Syme, Robert, et al.
Published: (2016)
by: Syme, Robert, et al.
Published: (2016)
Validation of genome-wide association studies as a tool to identify virulence factors in parastagonospora nodorum
by: Gao, Y., et al.
Published: (2016)
by: Gao, Y., et al.
Published: (2016)
The utilisation of di/tri peptides by Stagonospora nodorum is dispensable for wheat infection
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Functional characterisation of glyoxalase I from the fungal wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
δ-Aminolevulinic acid synthesis is required for virulence of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to septoria nodorum blotch
by: Phan, Huyen, et al.
Published: (2021)
by: Phan, Huyen, et al.
Published: (2021)
Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005)
by: Solomon, P., et al.
Published: (2005)
The past, present and future of secondary metabolite research in the Dothideomycetes
by: Muria-González, Mariano Jordi, et al.
Published: (2015)
by: Muria-González, Mariano Jordi, et al.
Published: (2015)
Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum
by: Gummer, J., et al.
Published: (2013)
by: Gummer, J., et al.
Published: (2013)
A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum
by: Lowe, R., et al.
Published: (2008)
by: Lowe, R., et al.
Published: (2008)
Assessing European wheat sensitivities to parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3
by: Downie, R., et al.
Published: (2018)
by: Downie, R., et al.
Published: (2018)
Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum
by: Hane, J., et al.
Published: (2007)
by: Hane, J., et al.
Published: (2007)
Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch)
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
The Disruption of a Gα Subunit Sheds New Light on the Pathogenicity of Stagonospora nodorum on Wheat
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Phytotoxin production in Aspergillus terreus is regulated by independent environmental signals
by: Gressler, Markus, et al.
Published: (2015)
by: Gressler, Markus, et al.
Published: (2015)
Stagonospora nodorum: From pathology to genomics and host resistance
by: Oliver, Richard, et al.
Published: (2012)
by: Oliver, Richard, et al.
Published: (2012)
Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene
by: Friesen, T., et al.
Published: (2008)
by: Friesen, T., et al.
Published: (2008)
A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat
by: Vincent, D., et al.
Published: (2011)
by: Vincent, D., et al.
Published: (2011)
Comparative Genomics of Parastagonospora and Pyrenophora species
by: Syme, Robert Andrew
Published: (2015)
by: Syme, Robert Andrew
Published: (2015)
Resequencing and comparative genomics of stagonospora nodorum: Sectional gene absence and effector discovery
by: Syme, Robert, et al.
Published: (2013)
by: Syme, Robert, et al.
Published: (2013)
Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox1 using an eight founder multiparent advanced generation inter-cross population
by: Cockram, J., et al.
Published: (2015)
by: Cockram, J., et al.
Published: (2015)
Quantitative disease resistance assessment by real-time PCR using the Stagonospora nodorum wheat pathosystem as a model
by: Oliver, Richard, et al.
Published: (2008)
by: Oliver, Richard, et al.
Published: (2008)
Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum
by: Lin, M., et al.
Published: (2020)
by: Lin, M., et al.
Published: (2020)
A comparative analysis of the heterotrimeric G-protein G[alpha], G[beta] and G[gamma] subunits in the wheat pathogen Stagonospora nodorum
by: Gummer, J., et al.
Published: (2012)
by: Gummer, J., et al.
Published: (2012)
Pathogenicity of Stagonospora nodorum requires malate synthase
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease
by: Li, W., et al.
Published: (2008)
by: Li, W., et al.
Published: (2008)
The Transcription Factor StuA Regulates Central Carbon Metabolism,Mycotoxin Production, and Effector Gene Expression in the WheatPathogen Stagonospora nodorum
by: Ip-Cho, S., et al.
Published: (2010)
by: Ip-Cho, S., et al.
Published: (2010)
Pan-parastagonospora comparative genome analysis-effector prediction and genome evolution
by: Syme, Robert, et al.
Published: (2018)
by: Syme, Robert, et al.
Published: (2018)
The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system
by: Liu, Z., et al.
Published: (2006)
by: Liu, Z., et al.
Published: (2006)
The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005)
by: Solomon, P., et al.
Published: (2005)
Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography . and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum
by: Bringans, S., et al.
Published: (2009)
by: Bringans, S., et al.
Published: (2009)
Similar Items
-
A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum
by: Chooi, Y., et al.
Published: (2014) -
SnPKS19 encodes the polyketide synthase for alternariol mycotoxin biosynthesis in the wheat pathogen Parastagonospora nodorum
by: Chooi, Y., et al.
Published: (2015) -
An In planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum
by: Chooi, Y., et al.
Published: (2015) -
Characterisation of transcriptional elements regulating
virulence during Parastagonospora nodorum infection of
wheat
by: John, Evan Johann
Published: (2021) -
Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem
by: Gao, Y., et al.
Published: (2015)