A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells

A La0.8Sr0.2MnO3 (LSM)/La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) core–shell structured composite cathode of solid oxide fuel cells (SOFCs) has been fabricated by wet infiltration followed by a rapid sintering (RS) process. The RS is carried out by placing LSCF infiltrated LSM electrodes directly into a prehea...

Full description

Bibliographic Details
Main Authors: Ai, Na, Chen, Kongfa, Jiang, San Ping
Format: Journal Article
Published: Elsevier Ltd 2017
Online Access:http://purl.org/au-research/grants/arc/DP150102025
http://hdl.handle.net/20.500.11937/51947
_version_ 1848758806419341312
author Ai, Na
Chen, Kongfa
Jiang, San Ping
author_facet Ai, Na
Chen, Kongfa
Jiang, San Ping
author_sort Ai, Na
building Curtin Institutional Repository
collection Online Access
description A La0.8Sr0.2MnO3 (LSM)/La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) core–shell structured composite cathode of solid oxide fuel cells (SOFCs) has been fabricated by wet infiltration followed by a rapid sintering (RS) process. The RS is carried out by placing LSCF infiltrated LSM electrodes directly into a preheated furnace at 800 °C for 10 min and cooling down very quickly. The heating and cooling step takes about 20 s, substantially shorter than 10 h in the case of conventional sintering (CS) process. The results indicate the formation of a continuous and almost non-porous LSCF thin film on the LSM scaffold, forming a LSCF/LSM core–shell structure. Such RS-formed infiltrated LSCF–LSM cathodes show an electrode polarization resistance of 2.1 Ω cm2 at 700 °C, substantially smaller than 88.2 Ω cm2 of pristine LSM electrode. The core–shell structured LSCF–LSM electrodes also show good operating stability at 700 °C and 600 °C over 24–40 h.
first_indexed 2025-11-14T09:49:50Z
format Journal Article
id curtin-20.500.11937-51947
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:49:50Z
publishDate 2017
publisher Elsevier Ltd
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-519472022-10-12T06:49:54Z A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells Ai, Na Chen, Kongfa Jiang, San Ping A La0.8Sr0.2MnO3 (LSM)/La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) core–shell structured composite cathode of solid oxide fuel cells (SOFCs) has been fabricated by wet infiltration followed by a rapid sintering (RS) process. The RS is carried out by placing LSCF infiltrated LSM electrodes directly into a preheated furnace at 800 °C for 10 min and cooling down very quickly. The heating and cooling step takes about 20 s, substantially shorter than 10 h in the case of conventional sintering (CS) process. The results indicate the formation of a continuous and almost non-porous LSCF thin film on the LSM scaffold, forming a LSCF/LSM core–shell structure. Such RS-formed infiltrated LSCF–LSM cathodes show an electrode polarization resistance of 2.1 Ω cm2 at 700 °C, substantially smaller than 88.2 Ω cm2 of pristine LSM electrode. The core–shell structured LSCF–LSM electrodes also show good operating stability at 700 °C and 600 °C over 24–40 h. 2017 Journal Article http://hdl.handle.net/20.500.11937/51947 10.1016/j.ijhydene.2016.10.036 http://purl.org/au-research/grants/arc/DP150102025 http://purl.org/au-research/grants/arc/DP150102044 Elsevier Ltd fulltext
spellingShingle Ai, Na
Chen, Kongfa
Jiang, San Ping
A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
title A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
title_full A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
title_fullStr A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
title_full_unstemmed A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
title_short A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
title_sort la0.8sr0.2mno3/la0.6sr0.4co0.2fe0.8o3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
url http://purl.org/au-research/grants/arc/DP150102025
http://purl.org/au-research/grants/arc/DP150102025
http://hdl.handle.net/20.500.11937/51947