Restrictions in model reduction for polymer chain models in Dissipative Particle Dynamics
We model high molecular weight homopolymers in semidilute concentration via Dissipative Particle Dynamics (DPD). We show that in model reduction methodologies for polymers it is not enough to preserve system properties (i.e., density ñ, pressure p, temperature T, radial distribution function g(r)) b...
| Main Authors: | , , |
|---|---|
| Format: | Conference Paper |
| Published: |
2014
|
| Online Access: | http://hdl.handle.net/20.500.11937/51561 |
| Summary: | We model high molecular weight homopolymers in semidilute concentration via Dissipative Particle Dynamics (DPD). We show that in model reduction methodologies for polymers it is not enough to preserve system properties (i.e., density ñ, pressure p, temperature T, radial distribution function g(r)) but preserving also the characteristic shape and length scale of the polymer chain model is necessary. In this work we apply a DPD-model-reduction methodology for linear polymers recently proposed; and demonstrate why the applicability of this methodology is limited upto certain maximum polymer length, and not suitable for solvent coarse graining. © The Authors. Published by Elsevier B.V. |
|---|