Stability of Nonlinear Stochastic Distributed Parameter Systems and Its Applications

This paper derives several well-posedness (existence and uniqueness) and stability results for nonlinear stochastic distributed parameter systems (SDPSs) governed by nonlinear partial differential equations (PDEs) subject to both state-dependent and additive stochastic disturbances. These systems do...

Full description

Bibliographic Details
Main Author: Do, Khac Duc
Format: Journal Article
Published: The American Society of Mechanical Engineers 2016
Online Access:http://hdl.handle.net/20.500.11937/51405
Description
Summary:This paper derives several well-posedness (existence and uniqueness) and stability results for nonlinear stochastic distributed parameter systems (SDPSs) governed by nonlinear partial differential equations (PDEs) subject to both state-dependent and additive stochastic disturbances. These systems do not need to satisfy global Lipschitz and linear growth conditions. First, the nonlinear SDPSs are transformed to stochastic evolution systems (SESs), which are governed by stochastic ordinary differential equations (SODEs) in appropriate Hilbert spaces, using functional analysis. Second, Lyapunov sufficient conditions are derived to ensure well-posedness and almost sure (a.s.) asymptotic and practical stability of strong solutions. Third, the above results are applied to study well-posedness and stability of the solutions of two exemplary SDPSs.