In-hand forward and inverse kinematics with rolling contact
Robotic hands use rolling contact to manipulate a grasped object to a desired location, even when the finger and the palm linkage mechanisms lack degrees of freedom. This paper presents a systematic approach to the forward and inverse kinematics of in-hand manipulation. The moving frame method in di...
| Main Authors: | , , |
|---|---|
| Format: | Journal Article |
| Published: |
Cambridge University Press
2017
|
| Online Access: | http://hdl.handle.net/20.500.11937/51304 |
| Summary: | Robotic hands use rolling contact to manipulate a grasped object to a desired location, even when the finger and the palm linkage mechanisms lack degrees of freedom. This paper presents a systematic approach to the forward and inverse kinematics of in-hand manipulation. The moving frame method in differential geometry is integrated into the product of exponential formula to establish a pure geometric framework of the kinematics of a robot hand. The forward and inverse kinematics of a multifingered hand are obtained in terms of the joint rates and contact trajectories. A two-fingered planar robot hand and a three-fingered spatial robot hand are used to demonstrate the proposed approach. The proposed formulation amounts to solving a univariate polynomial, providing an alternative to the existing ones that require numerical integration. |
|---|