A functionally conserved Zn2 Cys6 binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host-specific virulence of two major Pleosporales fungal pathogens of wheat.
The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch of wheat (Triticum aestivum). The interaction is mediated by multiple fungal necrotrophic effector-dominant host sensitivity gene interactions. The three best-characterized effector-sensitivity gene systems are SnToxA...
| Main Authors: | Rybak, K., See, Pao Theen, Phan, Huyen Phan, Syme, Robert, Moffat, Caroline, Oliver, Richard, Tan, Kar-Chun |
|---|---|
| Format: | Journal Article |
| Published: |
Wiley-Blackwell Publishing Ltd.
2017
|
| Online Access: | http://hdl.handle.net/20.500.11937/51201 |
Similar Items
Proteinaceous necrotrophic effectors in fungal virulence
by: Tan, Kar-Chun, et al.
Published: (2010)
by: Tan, Kar-Chun, et al.
Published: (2010)
A specific fungal transcription factor controls effector gene expression and orchestrates the establishment of the necrotrophic pathogen lifestyle on wheat
by: Jones, Darcy, et al.
Published: (2019)
by: Jones, Darcy, et al.
Published: (2019)
Absence of detectable yield penalty associated with insensitivity to Pleosporales necrotrophic effectors in wheat grown in the West Australian wheat belt
by: Oliver, Richard, et al.
Published: (2014)
by: Oliver, Richard, et al.
Published: (2014)
Regulatory insight for a Zn2Cys6 transcription factor controlling effector-mediated virulence in a fungal pathogen of wheat
by: John, Evan, et al.
Published: (2024)
by: John, Evan, et al.
Published: (2024)
Functional redundancy of necrotrophic effectors – consequences for exploitation for breeding
by: Tan, Kar-Chun, et al.
Published: (2015)
by: Tan, Kar-Chun, et al.
Published: (2015)
Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat
by: John, Evan, et al.
Published: (2022)
by: John, Evan, et al.
Published: (2022)
Sensitivity to three Parastagonospora nodorum necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors
by: Tan, Kar-Chun, et al.
Published: (2013)
by: Tan, Kar-Chun, et al.
Published: (2013)
Necrotrophic Pathogens of Wheat
by: Oliver, Richard, et al.
Published: (2016)
by: Oliver, Richard, et al.
Published: (2016)
Differential effector gene expression underpins epistasis in a plant fungal disease.
by: Phan, Huyen, et al.
Published: (2016)
by: Phan, Huyen, et al.
Published: (2016)
Assessing European wheat sensitivities to parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3
by: Downie, R., et al.
Published: (2018)
by: Downie, R., et al.
Published: (2018)
The Velvet transcription factor PnVeA regulates necrotrophic effectors and secondary metabolism in the wheat pathogen Parastagonospora nodorum
by: Morikawa, Shota, et al.
Published: (2024)
by: Morikawa, Shota, et al.
Published: (2024)
Chromosome-level genome assembly and manually-curated proteome of model necrotroph Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and redundancy of virulence-related functions within an accessory chromosome
by: Bertazzoni, Stefania, et al.
Published: (2021)
by: Bertazzoni, Stefania, et al.
Published: (2021)
Host specific toxins; effectors of necrotrophic pathogenicity
by: Friesen, T., et al.
Published: (2008)
by: Friesen, T., et al.
Published: (2008)
Heterologous Expression of the Pyrenophora tritici-repentis Effector Proteins ToxA and ToxB, and the Prevalence of Effector Sensitivity in Australian Cereal Crops
by: Moffat, Caroline, et al.
Published: (2019)
by: Moffat, Caroline, et al.
Published: (2019)
Prevalence and importance of sensitivity to Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars.
by: Lichtenzveig, Judith, et al.
Published: (2011)
by: Lichtenzveig, Judith, et al.
Published: (2011)
New developments in pathogenicity and virulence of necrotrophs
by: Oliver, Richard, et al.
Published: (2010)
by: Oliver, Richard, et al.
Published: (2010)
PacBio genome sequencing reveals new insights into the genomic organisation of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis
by: Moolhuijzen, Paula, et al.
Published: (2020)
by: Moolhuijzen, Paula, et al.
Published: (2020)
Correction to: PacBio genome sequencing reveals new insights into the genomic organisation of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis
by: Moolhuijzen, Paula, et al.
Published: (2021)
by: Moolhuijzen, Paula, et al.
Published: (2021)
Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot
by: Corsi, B., et al.
Published: (2020)
by: Corsi, B., et al.
Published: (2020)
The first genome assembly of fungal pathogen Pyrenophora tritici-repentis race 1 isolate using Oxford Nanopore MinION sequencing
by: Moolhuijzen, Paula, et al.
Published: (2021)
by: Moolhuijzen, Paula, et al.
Published: (2021)
Evaluation of a novel molecular marker associated with the tan spot disease response in wheat
by: See, Pao Theen, et al.
Published: (2021)
by: See, Pao Theen, et al.
Published: (2021)
The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1
by: Liu, Z., et al.
Published: (2012)
by: Liu, Z., et al.
Published: (2012)
A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens
by: Faris, J., et al.
Published: (2010)
by: Faris, J., et al.
Published: (2010)
Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species
by: McDonald, M., et al.
Published: (2013)
by: McDonald, M., et al.
Published: (2013)
Transcription factor lineages in plant-pathogenic fungi, connecting
diversity with fungal virulence
by: John, Evan, et al.
Published: (2022)
by: John, Evan, et al.
Published: (2022)
Virulence assessment of Australian Pyrenophora tritici-repentis isolates
by: See, Pao Theen, et al.
Published: (2021)
by: See, Pao Theen, et al.
Published: (2021)
Evaluation of Pyrenophora tritici-repentis Infection of Wheat Heads
by: See, Pao Theen, et al.
Published: (2020)
by: See, Pao Theen, et al.
Published: (2020)
Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity
by: Moolhuijzen, Paula, et al.
Published: (2018)
by: Moolhuijzen, Paula, et al.
Published: (2018)
Exploration of wheat and pathogen transcriptomes during tan spot infection
by: Moolhuijzen, Paula, et al.
Published: (2018)
by: Moolhuijzen, Paula, et al.
Published: (2018)
Leaf yellowing of the wheat cultivar Mace in the absence of yellowspot disease
by: Moffat, Caroline, et al.
Published: (2014)
by: Moffat, Caroline, et al.
Published: (2014)
Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens
by: Vleeshouwers, V., et al.
Published: (2014)
by: Vleeshouwers, V., et al.
Published: (2014)
Plant and necrotrophic fungal pathogen interaction: mechanism and mode of action
by: Abdullah, Siti Nor Akmar, et al.
Published: (2016)
by: Abdullah, Siti Nor Akmar, et al.
Published: (2016)
Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis
by: Moffat, Caroline, et al.
Published: (2014)
by: Moffat, Caroline, et al.
Published: (2014)
Fungal plant pathogenesis mediated by effectors
by: De Wit, P., et al.
Published: (2016)
by: De Wit, P., et al.
Published: (2016)
A revised nomenclature for ToxA haplotypes across multiple fungal species
by: Aboukhaddour, Reem, et al.
Published: (2023)
by: Aboukhaddour, Reem, et al.
Published: (2023)
Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox1 using an eight founder multiparent advanced generation inter-cross population
by: Cockram, J., et al.
Published: (2015)
by: Cockram, J., et al.
Published: (2015)
Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0
by: Sperschneider, J., et al.
Published: (2018)
by: Sperschneider, J., et al.
Published: (2018)
EffectorP: Predicting fungal effector proteins from secretomes using machine learning
by: Sperschneider, J., et al.
Published: (2016)
by: Sperschneider, J., et al.
Published: (2016)
The identification and deletion of the polyketide synthase-nonribosomal peptide synthase gene responsible for the production of the phytotoxic triticone A/B in the wheat fungal pathogen Pyrenophora tritici-repentis
by: Rawlinson, Catherine, et al.
Published: (2019)
by: Rawlinson, Catherine, et al.
Published: (2019)
Evaluation of a Multilocus Indel DNA Region for the Detection of the Wheat Tan Spot Pathogen Pyrenophora tritici-repentis
by: See, Pao Theen, et al.
Published: (2016)
by: See, Pao Theen, et al.
Published: (2016)
Similar Items
-
Proteinaceous necrotrophic effectors in fungal virulence
by: Tan, Kar-Chun, et al.
Published: (2010) -
A specific fungal transcription factor controls effector gene expression and orchestrates the establishment of the necrotrophic pathogen lifestyle on wheat
by: Jones, Darcy, et al.
Published: (2019) -
Absence of detectable yield penalty associated with insensitivity to Pleosporales necrotrophic effectors in wheat grown in the West Australian wheat belt
by: Oliver, Richard, et al.
Published: (2014) -
Regulatory insight for a Zn2Cys6 transcription factor controlling effector-mediated virulence in a fungal pathogen of wheat
by: John, Evan, et al.
Published: (2024) -
Functional redundancy of necrotrophic effectors – consequences for exploitation for breeding
by: Tan, Kar-Chun, et al.
Published: (2015)