A real-time fast radio burst: Polarization detection and multiwavelength follow-up

Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to s...

Full description

Bibliographic Details
Main Authors: Petroff, E., Bailes, M., Barr, E., Barsdell, B., Bhat, Ramesh, Bian, F., Burke-Spolaor, S., Caleb, M., Champion, D., Chandra, P., Da Costa, G., Delvaux, C., Flynn, C., Gehrels, N., Greiner, J., Jameson, A., Johnston, S., Kasliwal, M., Keane, E., Keller, S., Kocz, J., Kramer, M., Leloudas, G., Malesani, D., Mulchaey, J., Ng, C., Ofek, E., Perley, D., Possenti, A., Schmidt, B., Shen, Y., Stappers, B., Tisserand, P., van Straten, W., Wolf, C.
Format: Journal Article
Published: Oxford University Press 2015
Online Access:http://hdl.handle.net/20.500.11937/51106
_version_ 1848758616423661568
author Petroff, E.
Bailes, M.
Barr, E.
Barsdell, B.
Bhat, Ramesh
Bian, F.
Burke-Spolaor, S.
Caleb, M.
Champion, D.
Chandra, P.
Da Costa, G.
Delvaux, C.
Flynn, C.
Gehrels, N.
Greiner, J.
Jameson, A.
Johnston, S.
Kasliwal, M.
Keane, E.
Keller, S.
Kocz, J.
Kramer, M.
Leloudas, G.
Malesani, D.
Mulchaey, J.
Ng, C.
Ofek, E.
Perley, D.
Possenti, A.
Schmidt, B.
Shen, Y.
Stappers, B.
Tisserand, P.
van Straten, W.
Wolf, C.
author_facet Petroff, E.
Bailes, M.
Barr, E.
Barsdell, B.
Bhat, Ramesh
Bian, F.
Burke-Spolaor, S.
Caleb, M.
Champion, D.
Chandra, P.
Da Costa, G.
Delvaux, C.
Flynn, C.
Gehrels, N.
Greiner, J.
Jameson, A.
Johnston, S.
Kasliwal, M.
Keane, E.
Keller, S.
Kocz, J.
Kramer, M.
Leloudas, G.
Malesani, D.
Mulchaey, J.
Ng, C.
Ofek, E.
Perley, D.
Possenti, A.
Schmidt, B.
Shen, Y.
Stappers, B.
Tisserand, P.
van Straten, W.
Wolf, C.
author_sort Petroff, E.
building Curtin Institutional Repository
collection Online Access
description Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to seconds, and enables polarimetry to be performed on FRBs for the first time. We have discovered an FRB (FRB 140514) in real-time on 2014 May 14 at 17:14:11.06 UTC at the Parkes radio telescope and triggered follow-up at other wavelengths within hours of the event. FRB 140514 was found with a dispersion measure (DM) of 562.7(6) cm-3 pc, giving an upper limit on source redshift of z ? 0.5. FRB 140514 was found to be 21 ± 7 per cent (3s) circularly polarized on the leading edge with a 1s upper limit on linear polarization <10 per cent. We conclude that this polarization is intrinsic to the FRB. If there was any intrinsic linear polarization, as might be expected from coherent emission, then it may have been depolarized by Faraday rotation caused by passing through strong magnetic fields and/or high-density environments. FRB 140514 was discovered during a campaign to re-observe known FRB fields, and lies close to a previous discovery, FRB 110220; based on the difference in DMs of these bursts and time-on-sky arguments, we attribute the proximity to sampling bias and conclude that they are distinct objects. Follow-up conducted by 12 telescopes observing from X-ray to radio wavelengths was unable to identify a variable multiwavelength counterpart, allowing us to rule out models in which FRBs originate from nearby (z < 0.3) supernovae and long duration gamma-ray bursts.
first_indexed 2025-11-14T09:46:49Z
format Journal Article
id curtin-20.500.11937-51106
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:46:49Z
publishDate 2015
publisher Oxford University Press
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-511062017-09-13T15:36:41Z A real-time fast radio burst: Polarization detection and multiwavelength follow-up Petroff, E. Bailes, M. Barr, E. Barsdell, B. Bhat, Ramesh Bian, F. Burke-Spolaor, S. Caleb, M. Champion, D. Chandra, P. Da Costa, G. Delvaux, C. Flynn, C. Gehrels, N. Greiner, J. Jameson, A. Johnston, S. Kasliwal, M. Keane, E. Keller, S. Kocz, J. Kramer, M. Leloudas, G. Malesani, D. Mulchaey, J. Ng, C. Ofek, E. Perley, D. Possenti, A. Schmidt, B. Shen, Y. Stappers, B. Tisserand, P. van Straten, W. Wolf, C. Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to seconds, and enables polarimetry to be performed on FRBs for the first time. We have discovered an FRB (FRB 140514) in real-time on 2014 May 14 at 17:14:11.06 UTC at the Parkes radio telescope and triggered follow-up at other wavelengths within hours of the event. FRB 140514 was found with a dispersion measure (DM) of 562.7(6) cm-3 pc, giving an upper limit on source redshift of z ? 0.5. FRB 140514 was found to be 21 ± 7 per cent (3s) circularly polarized on the leading edge with a 1s upper limit on linear polarization <10 per cent. We conclude that this polarization is intrinsic to the FRB. If there was any intrinsic linear polarization, as might be expected from coherent emission, then it may have been depolarized by Faraday rotation caused by passing through strong magnetic fields and/or high-density environments. FRB 140514 was discovered during a campaign to re-observe known FRB fields, and lies close to a previous discovery, FRB 110220; based on the difference in DMs of these bursts and time-on-sky arguments, we attribute the proximity to sampling bias and conclude that they are distinct objects. Follow-up conducted by 12 telescopes observing from X-ray to radio wavelengths was unable to identify a variable multiwavelength counterpart, allowing us to rule out models in which FRBs originate from nearby (z < 0.3) supernovae and long duration gamma-ray bursts. 2015 Journal Article http://hdl.handle.net/20.500.11937/51106 10.1093/mnras/stu2419 Oxford University Press fulltext
spellingShingle Petroff, E.
Bailes, M.
Barr, E.
Barsdell, B.
Bhat, Ramesh
Bian, F.
Burke-Spolaor, S.
Caleb, M.
Champion, D.
Chandra, P.
Da Costa, G.
Delvaux, C.
Flynn, C.
Gehrels, N.
Greiner, J.
Jameson, A.
Johnston, S.
Kasliwal, M.
Keane, E.
Keller, S.
Kocz, J.
Kramer, M.
Leloudas, G.
Malesani, D.
Mulchaey, J.
Ng, C.
Ofek, E.
Perley, D.
Possenti, A.
Schmidt, B.
Shen, Y.
Stappers, B.
Tisserand, P.
van Straten, W.
Wolf, C.
A real-time fast radio burst: Polarization detection and multiwavelength follow-up
title A real-time fast radio burst: Polarization detection and multiwavelength follow-up
title_full A real-time fast radio burst: Polarization detection and multiwavelength follow-up
title_fullStr A real-time fast radio burst: Polarization detection and multiwavelength follow-up
title_full_unstemmed A real-time fast radio burst: Polarization detection and multiwavelength follow-up
title_short A real-time fast radio burst: Polarization detection and multiwavelength follow-up
title_sort real-time fast radio burst: polarization detection and multiwavelength follow-up
url http://hdl.handle.net/20.500.11937/51106