The NANOGrav nine-year data set: Excess noise in millisecond pulsar arrival times

Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival t...

Full description

Bibliographic Details
Main Authors: Lam, M., Cordes, J., Chatterjee, S., Arzoumanian, Z., Crowter, K., Demorest, P., Dolch, T., Ellis, J., Ferdman, R., Fonseca, E., Gonzalez, M., Jones, G., Jones, M., Levin, L., Madison, D., McLaughlin, M., Nice, D., Pennucci, T., Ransom, S., Shannon, Ryan, Siemens, X., Stairs, I., Stovall, K., Swiggum, J., Zhu, W.
Format: Journal Article
Published: Institute of Physics Publishing 2017
Online Access:http://hdl.handle.net/20.500.11937/50896
_version_ 1848758562217525248
author Lam, M.
Cordes, J.
Chatterjee, S.
Arzoumanian, Z.
Crowter, K.
Demorest, P.
Dolch, T.
Ellis, J.
Ferdman, R.
Fonseca, E.
Gonzalez, M.
Jones, G.
Jones, M.
Levin, L.
Madison, D.
McLaughlin, M.
Nice, D.
Pennucci, T.
Ransom, S.
Shannon, Ryan
Siemens, X.
Stairs, I.
Stovall, K.
Swiggum, J.
Zhu, W.
author_facet Lam, M.
Cordes, J.
Chatterjee, S.
Arzoumanian, Z.
Crowter, K.
Demorest, P.
Dolch, T.
Ellis, J.
Ferdman, R.
Fonseca, E.
Gonzalez, M.
Jones, G.
Jones, M.
Levin, L.
Madison, D.
McLaughlin, M.
Nice, D.
Pennucci, T.
Ransom, S.
Shannon, Ryan
Siemens, X.
Stairs, I.
Stovall, K.
Swiggum, J.
Zhu, W.
author_sort Lam, M.
building Curtin Institutional Repository
collection Online Access
description Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum for 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon & Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies. © 2016. The American Astronomical Society. All rights reserved.
first_indexed 2025-11-14T09:45:57Z
format Journal Article
id curtin-20.500.11937-50896
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:45:57Z
publishDate 2017
publisher Institute of Physics Publishing
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-508962018-03-29T09:09:26Z The NANOGrav nine-year data set: Excess noise in millisecond pulsar arrival times Lam, M. Cordes, J. Chatterjee, S. Arzoumanian, Z. Crowter, K. Demorest, P. Dolch, T. Ellis, J. Ferdman, R. Fonseca, E. Gonzalez, M. Jones, G. Jones, M. Levin, L. Madison, D. McLaughlin, M. Nice, D. Pennucci, T. Ransom, S. Shannon, Ryan Siemens, X. Stairs, I. Stovall, K. Swiggum, J. Zhu, W. Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum for 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon & Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies. © 2016. The American Astronomical Society. All rights reserved. 2017 Journal Article http://hdl.handle.net/20.500.11937/50896 10.3847/1538-4357/834/1/35 Institute of Physics Publishing restricted
spellingShingle Lam, M.
Cordes, J.
Chatterjee, S.
Arzoumanian, Z.
Crowter, K.
Demorest, P.
Dolch, T.
Ellis, J.
Ferdman, R.
Fonseca, E.
Gonzalez, M.
Jones, G.
Jones, M.
Levin, L.
Madison, D.
McLaughlin, M.
Nice, D.
Pennucci, T.
Ransom, S.
Shannon, Ryan
Siemens, X.
Stairs, I.
Stovall, K.
Swiggum, J.
Zhu, W.
The NANOGrav nine-year data set: Excess noise in millisecond pulsar arrival times
title The NANOGrav nine-year data set: Excess noise in millisecond pulsar arrival times
title_full The NANOGrav nine-year data set: Excess noise in millisecond pulsar arrival times
title_fullStr The NANOGrav nine-year data set: Excess noise in millisecond pulsar arrival times
title_full_unstemmed The NANOGrav nine-year data set: Excess noise in millisecond pulsar arrival times
title_short The NANOGrav nine-year data set: Excess noise in millisecond pulsar arrival times
title_sort nanograv nine-year data set: excess noise in millisecond pulsar arrival times
url http://hdl.handle.net/20.500.11937/50896