Stochastic modeling of the output power of photovoltaic generators in various weather conditions

The intermittency of solar-powered energy sources prompt the uncertainty of load management. The influence of shading (whatever the reason may be) directly diminishes the feasible output power of the photovoltaic (PV) generators. The major causes of shading are the weather condition changes like the...

Full description

Bibliographic Details
Main Authors: Batool, M., Islam, Syed, Shahnia, Farhad
Format: Conference Paper
Published: 2016
Online Access:http://hdl.handle.net/20.500.11937/50734
Description
Summary:The intermittency of solar-powered energy sources prompt the uncertainty of load management. The influence of shading (whatever the reason may be) directly diminishes the feasible output power of the photovoltaic (PV) generators. The major causes of shading are the weather condition changes like the clouds, storms, and rains. Thereby, the dispatchable power for a distinct weather condition at an explicit time frame needs to be quantified. The stochastic modeling of a practical PV system has been performed in this paper. A step-by-step MATLAB-based algorithm is developed for tracking of dispatchable power limit using the Monte Carlo Principle. The proposed algorithm describes the weather condition as a function of cloud presence. The prescribed characteristics consist of the solar irradiance and the ambient temperature. The impact of weather changes on the output power of a PV system is evaluated by this algorithm. The results of this research are concluded by realistic data analysis taken from the Australian bureau of meteorology.