Adaptive control strategy for low voltage ride through capability enhancement of a grid-connected switched reluctance wind generator

This paper presents the application of an adaptive control strategy to enhance the low voltage ride through (LVRT) capability of a grid-connected switched reluctance wind generator. In this study, the switched reluctance generator (SRG) is driven by a variable-speed wind turbine and connected to the...

Full description

Bibliographic Details
Main Authors: Hasanien, H., Muyeen, S.M., Al-Durra, A.
Format: Conference Paper
Published: 2016
Online Access:http://hdl.handle.net/20.500.11937/50623
Description
Summary:This paper presents the application of an adaptive control strategy to enhance the low voltage ride through (LVRT) capability of a grid-connected switched reluctance wind generator. In this study, the switched reluctance generator (SRG) is driven by a variable-speed wind turbine and connected to the grid through an asymmetric half bridge inverter, DC-link, and DC-AC inverter system. The adaptive proportional-integral (PI) controllers are used to control the power electronic circuits. The Widrow-Hoff adaptation algorithm is used in this study. The Widrow-Hoff delta rule can be used to adapt the PI controllers' parameters. The detailed modelling and control strategies of the overall system are presented. The effectiveness of the proposed control scheme is verified under a severe symmetrical grid fault condition. The validity of the proposed system is verified by the simulation results, which are carried out using PSCAD/EMTDC.