From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution

The Ankaratra volcanic field covers an area of ~ 3800 km2 in central Madagascar and comprises of lava flows, lava domes, scoria cones, tuff rings and maars emplaced at different ages (Miocene to Recent). The volcanic products include ultramafic-mafic (olivine-leucite nephelinite, basanite, alkali ba...

Full description

Bibliographic Details
Main Authors: Cucciniello, C., Melluso, L., le Roex, A., Jourdan, Fred, Morra, V., de Gennaro, R., Grifa, C.
Format: Journal Article
Published: Elsevier BV 2017
Online Access:http://hdl.handle.net/20.500.11937/50288
_version_ 1848758439831928832
author Cucciniello, C.
Melluso, L.
le Roex, A.
Jourdan, Fred
Morra, V.
de Gennaro, R.
Grifa, C.
author_facet Cucciniello, C.
Melluso, L.
le Roex, A.
Jourdan, Fred
Morra, V.
de Gennaro, R.
Grifa, C.
author_sort Cucciniello, C.
building Curtin Institutional Repository
collection Online Access
description The Ankaratra volcanic field covers an area of ~ 3800 km2 in central Madagascar and comprises of lava flows, lava domes, scoria cones, tuff rings and maars emplaced at different ages (Miocene to Recent). The volcanic products include ultramafic-mafic (olivine-leucite nephelinite, basanite, alkali basalt, hawaiite and tholeiitic basalt), intermediate (mugearite and benmoreite) and felsic rocks (trachyphonolite, quartz trachyte and rhyolite), the latter often peralkaline. The 40Ar/39Ar determinations for mafic lavas yield ages of 17.45 ± 0.12 Ma, 16.63 ± 0.08 Ma and 8.62 ± 0.09 Ma, indicating a prolonged magmatic activity. The mineralogical and geochemical variations suggest that the magmatic evolution of the alkali basalt-hawaiite-mugearite-benmoreite-trachyte series can be accounted for by removal of olivine, feldspars, clinopyroxene, Fe-Ti oxides and accessory phases, producing residual trachytic and trachyphonolitic compositions mineralogically very similar to those of other volcanic areas and tectonic settings. The Ankaratra olivine leucite nephelinites, basanites and tholeiitic basalts do not seem to be associated with significant amounts of evolved comagmatic rocks. The 87Sr/86Sr (0.70504–0.71012), 143Nd/144Nd (0.51259–0.51244) and 206Pb/204Pb (17.705–18.563) isotopic ratios of trachytes and comendite are consistent with open-system processes. However, other trachyphonolites have 143Nd/144Nd (0.51280), 206Pb/204Pb (18.648), 207Pb/204Pb (15.582) and 208Pb/204Pb (38.795) similar to those of mafic rocks, suggesting differentiation processes without appreciable interaction with crustal materials. The Ankaratra volcanism is to be directly linked to a broadly E-W-trending intracontinental extension. A large-scale thermal anomaly, associated with an anomalously hot source region, is not required to explain the Cenozoic magmatism of Madagascar.
first_indexed 2025-11-14T09:44:01Z
format Journal Article
id curtin-20.500.11937-50288
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:44:01Z
publishDate 2017
publisher Elsevier BV
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-502882017-09-13T15:47:54Z From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution Cucciniello, C. Melluso, L. le Roex, A. Jourdan, Fred Morra, V. de Gennaro, R. Grifa, C. The Ankaratra volcanic field covers an area of ~ 3800 km2 in central Madagascar and comprises of lava flows, lava domes, scoria cones, tuff rings and maars emplaced at different ages (Miocene to Recent). The volcanic products include ultramafic-mafic (olivine-leucite nephelinite, basanite, alkali basalt, hawaiite and tholeiitic basalt), intermediate (mugearite and benmoreite) and felsic rocks (trachyphonolite, quartz trachyte and rhyolite), the latter often peralkaline. The 40Ar/39Ar determinations for mafic lavas yield ages of 17.45 ± 0.12 Ma, 16.63 ± 0.08 Ma and 8.62 ± 0.09 Ma, indicating a prolonged magmatic activity. The mineralogical and geochemical variations suggest that the magmatic evolution of the alkali basalt-hawaiite-mugearite-benmoreite-trachyte series can be accounted for by removal of olivine, feldspars, clinopyroxene, Fe-Ti oxides and accessory phases, producing residual trachytic and trachyphonolitic compositions mineralogically very similar to those of other volcanic areas and tectonic settings. The Ankaratra olivine leucite nephelinites, basanites and tholeiitic basalts do not seem to be associated with significant amounts of evolved comagmatic rocks. The 87Sr/86Sr (0.70504–0.71012), 143Nd/144Nd (0.51259–0.51244) and 206Pb/204Pb (17.705–18.563) isotopic ratios of trachytes and comendite are consistent with open-system processes. However, other trachyphonolites have 143Nd/144Nd (0.51280), 206Pb/204Pb (18.648), 207Pb/204Pb (15.582) and 208Pb/204Pb (38.795) similar to those of mafic rocks, suggesting differentiation processes without appreciable interaction with crustal materials. The Ankaratra volcanism is to be directly linked to a broadly E-W-trending intracontinental extension. A large-scale thermal anomaly, associated with an anomalously hot source region, is not required to explain the Cenozoic magmatism of Madagascar. 2017 Journal Article http://hdl.handle.net/20.500.11937/50288 10.1016/j.lithos.2016.12.026 Elsevier BV restricted
spellingShingle Cucciniello, C.
Melluso, L.
le Roex, A.
Jourdan, Fred
Morra, V.
de Gennaro, R.
Grifa, C.
From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution
title From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution
title_full From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution
title_fullStr From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution
title_full_unstemmed From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution
title_short From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution
title_sort from olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the ankaratra volcanic complex, madagascar: 40ar/39ar ages, phase compositions and bulk-rock geochemical and isotopic evolution
url http://hdl.handle.net/20.500.11937/50288