Appraisal of carbon-coated Li4Ti5O12 acanthospheres from optimized two-step hydrothermal synthesis as a superior anode for sodium-ion batteries
In this study, carbon-coated nanostructured Li4Ti5O12 acanthospheres with a highly porous and open structure, are prepared by a two-step hydrothermal synthesis, and are investigated as the anode for sodium-ion batteries (SIBs). The impact of the amount of glucose on the spinel-phase formation, the s...
| Main Authors: | Sha, Y., Li, L., Wei, S., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier B.V.
2017
|
| Online Access: | http://hdl.handle.net/20.500.11937/50249 |
Similar Items
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries
by: Li, M., et al.
Published: (2014)
by: Li, M., et al.
Published: (2014)
One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries
by: Hou, X., et al.
Published: (2014)
by: Hou, X., et al.
Published: (2014)
Recent progress on sodium ion batteries: Potential high-performance anodes
by: Li, L., et al.
Published: (2018)
by: Li, L., et al.
Published: (2018)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery
by: Yuan, T., et al.
Published: (2009)
by: Yuan, T., et al.
Published: (2009)
Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
by: Zhang, M., et al.
Published: (2014)
by: Zhang, M., et al.
Published: (2014)
Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries
by: Hou, X., et al.
Published: (2015)
by: Hou, X., et al.
Published: (2015)
A strongly coupled CoS2/ reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries
by: Xie, K., et al.
Published: (2017)
by: Xie, K., et al.
Published: (2017)
Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries
by: Zhang, Z., et al.
Published: (2017)
by: Zhang, Z., et al.
Published: (2017)
Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries
by: Yao, L., et al.
Published: (2014)
by: Yao, L., et al.
Published: (2014)
A hierarchical Zn2Mo3O8 nanodots–porous carbon composite as a superior anode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries
by: Zhao, Y., et al.
Published: (2015)
by: Zhao, Y., et al.
Published: (2015)
Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization
by: Wan, Z., et al.
Published: (2012)
by: Wan, Z., et al.
Published: (2012)
Optimization of SnO2 Nanoparticles Confined in a Carbon Matrix towards Applications as High‐Capacity Anodes in Sodium‐Ion Batteries
by: Wei, S., et al.
Published: (2018)
by: Wei, S., et al.
Published: (2018)
A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives
by: Zhao, B., et al.
Published: (2015)
by: Zhao, B., et al.
Published: (2015)
Mechanical properties of Li-Sn alloys for Li-ion battery anodes: A first-principles perspective
by: Zhang, P., et al.
Published: (2016)
by: Zhang, P., et al.
Published: (2016)
Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries
by: Zhao, Y., et al.
Published: (2016)
by: Zhao, Y., et al.
Published: (2016)
Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
First-Principles Study on the Mechanical Properties of Lithiated Sn Anode Materials for Li-Ion Batteries
by: Zhang, Panpan
Published: (2019)
by: Zhang, Panpan
Published: (2019)
Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries
by: Su, M., et al.
Published: (2023)
by: Su, M., et al.
Published: (2023)
Carbon based anode materials for Li-ion battery application: a review of recent development
by: Zahoor, Ahmed, et al.
Published: (2021)
by: Zahoor, Ahmed, et al.
Published: (2021)
Advances in modeling and simulation of Li–air batteries
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2015)
by: Lin, Q., et al.
Published: (2015)
Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance
by: Wang, G., et al.
Published: (2010)
by: Wang, G., et al.
Published: (2010)
Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
by: Gao, X., et al.
Published: (2015)
by: Gao, X., et al.
Published: (2015)
Superiority of gel polymer electrolytes as an application in lithium-ion batteries
by: Nurhasniza, Mamajan Khan, et al.
Published: (2022)
by: Nurhasniza, Mamajan Khan, et al.
Published: (2022)
Impact of CO2 activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes
by: Liang, Suzhe, et al.
Published: (2021)
by: Liang, Suzhe, et al.
Published: (2021)
Enhancing Fast-Charge Capabilities in Solid-State Lithium Batteries through the Integration of High Li0.5La0.5TiO3 (LLTO) Content in the Lithium-Metal Anode
by: Cao, Chencheng, et al.
Published: (2023)
by: Cao, Chencheng, et al.
Published: (2023)
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
Tuning the Electronic Properties of 2H-MoS2/C Anode Materials for Sodium-Ion Batteries via Zn Doping
by: Zhang, P., et al.
Published: (2023)
by: Zhang, P., et al.
Published: (2023)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries
by: Jiang, X., et al.
Published: (2015)
by: Jiang, X., et al.
Published: (2015)
Spinel LiMn2O4 cathode and carbonaceous anode material for electrochemical energy storage lithium-ion battery
by: Zahoor, Ahmed
Published: (2021)
by: Zahoor, Ahmed
Published: (2021)
Tuning intrinsic lithiophilicity of copper foil to improve electrochemical performance of anode-free Li metal battery
by: Natarajan, Karthic, et al.
Published: (2024)
by: Natarajan, Karthic, et al.
Published: (2024)
Similar Items
-
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016) -
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010) -
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013) -
Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries
by: Li, M., et al.
Published: (2014) -
One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance
by: Sha, Y., et al.
Published: (2016)