IRNSS/NavIC L5 attitude determination
The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully-operational and has been provided with the operational name of NavIC (Navigation with Indian Constellation). It has been developed by the Indian Space Research Organization (ISRO) with the objective of offer...
| Main Authors: | , , |
|---|---|
| Format: | Journal Article |
| Published: |
MDPI Publishing
2017
|
| Online Access: | http://hdl.handle.net/20.500.11937/50010 |
| _version_ | 1848758372323557376 |
|---|---|
| author | Zaminpardaz, Safoora Teunissen, Peter Nadarajah, Nandakumaran |
| author_facet | Zaminpardaz, Safoora Teunissen, Peter Nadarajah, Nandakumaran |
| author_sort | Zaminpardaz, Safoora |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully-operational and has been provided with the operational name of NavIC (Navigation with Indian Constellation). It has been developed by the Indian Space Research Organization (ISRO) with the objective of offering positioning, navigation and timing (PNT) to the users in its service area. This contribution provides for the first time an assessment of the IRNSS L5-signal capability to achieve instantaneous attitude determination on the basis of data collected in Perth, Australia. Our evaluations are conducted for both a linear array of two antennas and a planar array of three antennas. A pre-requisite for precise and fast IRNSS attitude determination is the successful resolution of the double-differenced (DD) integer carrier-phase ambiguities. In this contribution, we will compare the performances of different such methods, amongst which the unconstrained and the multivariate-constrained LAMBDA method for both linear and planar arrays. It is demonstrated that the instantaneous ambiguity success rates increase from 15% to 90% for the linear array and from 5% to close to 100% for the planar array, thus showing that standalone IRNSS can realize 24-h almost instantaneous precise attitude determination with heading and elevation standard deviations of 0.05 and 0.10 degrees, respectively. © 2017 by the authors; licensee MDPI, Basel, Switzerland. |
| first_indexed | 2025-11-14T09:42:56Z |
| format | Journal Article |
| id | curtin-20.500.11937-50010 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T09:42:56Z |
| publishDate | 2017 |
| publisher | MDPI Publishing |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-500102017-09-13T15:35:58Z IRNSS/NavIC L5 attitude determination Zaminpardaz, Safoora Teunissen, Peter Nadarajah, Nandakumaran The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully-operational and has been provided with the operational name of NavIC (Navigation with Indian Constellation). It has been developed by the Indian Space Research Organization (ISRO) with the objective of offering positioning, navigation and timing (PNT) to the users in its service area. This contribution provides for the first time an assessment of the IRNSS L5-signal capability to achieve instantaneous attitude determination on the basis of data collected in Perth, Australia. Our evaluations are conducted for both a linear array of two antennas and a planar array of three antennas. A pre-requisite for precise and fast IRNSS attitude determination is the successful resolution of the double-differenced (DD) integer carrier-phase ambiguities. In this contribution, we will compare the performances of different such methods, amongst which the unconstrained and the multivariate-constrained LAMBDA method for both linear and planar arrays. It is demonstrated that the instantaneous ambiguity success rates increase from 15% to 90% for the linear array and from 5% to close to 100% for the planar array, thus showing that standalone IRNSS can realize 24-h almost instantaneous precise attitude determination with heading and elevation standard deviations of 0.05 and 0.10 degrees, respectively. © 2017 by the authors; licensee MDPI, Basel, Switzerland. 2017 Journal Article http://hdl.handle.net/20.500.11937/50010 10.3390/s17020274 http://creativecommons.org/licenses/by/4.0/ MDPI Publishing fulltext |
| spellingShingle | Zaminpardaz, Safoora Teunissen, Peter Nadarajah, Nandakumaran IRNSS/NavIC L5 attitude determination |
| title | IRNSS/NavIC L5 attitude determination |
| title_full | IRNSS/NavIC L5 attitude determination |
| title_fullStr | IRNSS/NavIC L5 attitude determination |
| title_full_unstemmed | IRNSS/NavIC L5 attitude determination |
| title_short | IRNSS/NavIC L5 attitude determination |
| title_sort | irnss/navic l5 attitude determination |
| url | http://hdl.handle.net/20.500.11937/50010 |