Existence of Monotone Positive Solutions for semipositone right focal boundary value problems with dependence on the derivatives

We study the existence of monotone positive solutions for the semipositone right focal boundary value problems ⎧⎪⎪⎨ ⎪⎪⎩ (−1)(n−k)u(n)(t) = λf(t, u(t), u (t), . . . , u(k−1)(t)), t∈ (0, 1), u(i)(0) = 0, 0 ≤ i ≤ k − 1, u(j)(1) = 0, k≤ j ≤ n − 1, where λ > 0 is a parameter, n ≥ 3, 1 < k...

Full description

Bibliographic Details
Main Authors: Hao, X., Liu, L., Wu, Yong Hong
Format: Journal Article
Published: Kexue Chubanshe 2012
Online Access:http://hdl.handle.net/20.500.11937/49496
Description
Summary:We study the existence of monotone positive solutions for the semipositone right focal boundary value problems ⎧⎪⎪⎨ ⎪⎪⎩ (−1)(n−k)u(n)(t) = λf(t, u(t), u (t), . . . , u(k−1)(t)), t∈ (0, 1), u(i)(0) = 0, 0 ≤ i ≤ k − 1, u(j)(1) = 0, k≤ j ≤ n − 1, where λ > 0 is a parameter, n ≥ 3, 1 < k ≤ n − 1 is fixed, f may change sign for 0 < t < 1 and we allow f is both semipositone and lower unbounded. Without making any monotone type assumption, the existence results of at least one and two monotone positive solutions are obtained by means of the fixed point theorems in cones.