In-situ polymerization of magnetic biochar – polypyrrole composite: A novel application in supercapacitor

© 2017 Elsevier LtdThis paper focuses on the production of magnetic biochar through a novel vacuum condition in an electrical muffle furnace by employing durian rind as the raw material in the presence of three different metallic salts. A high BET surface area value of 835 m2 g-1 was attained at the...

Full description

Bibliographic Details
Main Authors: Thines, K., Abdullah, E., Mujawar, Mubarak, Ruthiraan, M.
Format: Journal Article
Published: Pergamon 2017
Online Access:http://hdl.handle.net/20.500.11937/48958
Description
Summary:© 2017 Elsevier LtdThis paper focuses on the production of magnetic biochar through a novel vacuum condition in an electrical muffle furnace by employing durian rind as the raw material in the presence of three different metallic salts. A high BET surface area value of 835 m2 g-1 was attained at the pyrolysis temperature and time of 800 °C and 25 min. This magnetic biochar was embedded with polypyrrole (PPY) through an in-situ polymerization process which improved specific capacitance of the polymer composite compared to the pure PPY and magnetic biochar. The MBCP composite exhibited the highest specific capacitance of 572 F g-1 and energy density of 71.50 Wh kg-1 compared to other existing PPY coated carbon composite. This MBCP composite exhibits a good potential for future low-cost supercapacitor applications with an impressive specific capacitance and energy density value.