A hypoglycemic episode diagnosis system based on neural networks for Type 1 diabetes mellitus

Hypoglycemia (or low blood glucose) is dangerous for Type 1 diabetes mellitus (T1DM) patients, as this can cause unconsciousness or even death. However, it is impossible to monitor the hypoglycemia by measuring patients’ blood glucose levels all the time, especially at night. In this paper, a hypogl...

Full description

Bibliographic Details
Main Authors: Chan, Kit Yan, Ling, Sai, Nguyen, Hung, Jiang, Frank
Other Authors: IEEE
Format: Conference Paper
Published: IEEE 2012
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/48161
Description
Summary:Hypoglycemia (or low blood glucose) is dangerous for Type 1 diabetes mellitus (T1DM) patients, as this can cause unconsciousness or even death. However, it is impossible to monitor the hypoglycemia by measuring patients’ blood glucose levels all the time, especially at night. In this paper, a hypoglycemic episode diagnosis system is proposed to determine T1DM patients’ blood glucose levels based on these patients’ physiological parameters which can be measured online. It can be used not only to diagnose hypoglycemic episodes in T1DM patients, but also to generate a set of rules, which describe the domains of physiological parameters that lead to hypoglycemic episodes. The hypoglycemic episode diagnosis system addresses the limitations of the traditional neural network approaches which cannot generate implicit information. The performance of the proposed hypoglycemic episode diagnosis system is evaluated by using real T1DM patients’ data sets collected from the Department of Health, Government of Western Australia, Australia. Results show that satisfactory diagnosis accuracy can be obtained. Also, explicit knowledge can be produced such that the deficiency of traditional neural networks can be overcome. A clear understanding of how they perform diagnosis can be indicated.