Quantum fluctuations increase the self-diffusive motion of para-hydrogenin narrow carbon nanotubesw

Quantum fluctuations significantly increase the self-diffusive motion of para-hydrogen adsorbed in narrow carbon nanotubes at 30 K comparing to its classical counterpart. Rigorous Feynman’s path integral calculations reveal that self-diffusive motion of para-hydrogen in a narrow (6,6) carbon nanotub...

Full description

Bibliographic Details
Main Authors: Kowalczyk, Piotr, Gauden, P., Terzyk, A., Furmaniak, S.
Format: Journal Article
Published: Royal Society of Chemistry 2011
Online Access:http://hdl.handle.net/20.500.11937/48029
Description
Summary:Quantum fluctuations significantly increase the self-diffusive motion of para-hydrogen adsorbed in narrow carbon nanotubes at 30 K comparing to its classical counterpart. Rigorous Feynman’s path integral calculations reveal that self-diffusive motion of para-hydrogen in a narrow (6,6) carbon nanotube at 30 K and pore densities below ~29 mmol cm-3 is one order of magnitude faster than the classical counterpart. We find that the zero-point energy and tunnelling significantly smoothed out the free energy landscape of para-hydrogen molecules adsorbed in a narrow (6,6) carbon nanotube. This promotes a delocalization of the confined para-hydrogen at 30 K (i.e., population of unclassical paths due to quantum effects). Contrary the self-diffusive motion of classical para-hydrogen molecules in a narrow (6,6) carbon nanotube at 30 K is very slow. This is because classical para-hydrogen molecules undergo highly correlated movement when their collision diameter approached the carbon nanotube size (i.e., anomalous diffusion in quasi-one dimensional pores). On the basis of current results we predict that narrow single-walled carbon nanotubes are promising nanoporous molecular sieves being able to separate para-hydrogen molecules from mixtures of classical particles at cryogenic temperatures.