Utilising polyphenols for the clinical management of Candida albicans biofilms
Polyphenols (PPs) are secondary metabolites abundant in plant-derived foods. They are reported to exhibit antimicrobial activity that may offer an alternative to existing antimicrobials. The aim of this study was to evaluate the antifungal potential of PPs against Candida albicans biofilms that are...
| Main Authors: | Shahzad, M., Sherry, L., Rajendran, R., Edwards, Christine, Combet, E., Ramage, G. |
|---|---|
| Format: | Journal Article |
| Published: |
2014
|
| Online Access: | http://hdl.handle.net/20.500.11937/46816 |
Similar Items
Metabolic Adaptation Of Candida Albicans Biofilms
by: Ayodeji, Ishola Oluwaseun
Published: (2015)
by: Ayodeji, Ishola Oluwaseun
Published: (2015)
Metabolic Adaptation Of Candida Albicans
Biofilms
by: Ayodeji, Ishola Oluwaseun
Published: (2015)
by: Ayodeji, Ishola Oluwaseun
Published: (2015)
Photoactivated riboflavin inhibits planktonic and biofilm growth of Candida albicans and non-albicans Candida species
by: Farah, Nuratiqah, et al.
Published: (2024)
by: Farah, Nuratiqah, et al.
Published: (2024)
The effect of different composite on Candida albicans biofilm development
by: Nor Azemi, Siti Nor Humaira, et al.
Published: (2019)
by: Nor Azemi, Siti Nor Humaira, et al.
Published: (2019)
Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent
by: Arzmi, Mohd Hafiz, et al.
Published: (2016)
by: Arzmi, Mohd Hafiz, et al.
Published: (2016)
Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation
by: Shahzad, M., et al.
Published: (2015)
by: Shahzad, M., et al.
Published: (2015)
Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans
by: Holcombe, L., et al.
Published: (2010)
by: Holcombe, L., et al.
Published: (2010)
Poly-microbia biofilms are Candida albicans
strain and morphology dependent
by: Arzmi, Mohd Hafiz, et al.
Published: (2015)
by: Arzmi, Mohd Hafiz, et al.
Published: (2015)
Exploiting interkingdom interactions for development of small-molecule inhibitors of Candida albicans biofilm formation
by: Reen, F., et al.
Published: (2016)
by: Reen, F., et al.
Published: (2016)
FTIR spectral changes in Candida albicans biofilm following exposure to antifungals
by: Alya Nur Athirah Kamaruzzaman,, et al.
by: Alya Nur Athirah Kamaruzzaman,, et al.
FTIR spectral changes in Candida albicans biofilm following exposure to antifungals
by: Alya Nur Athirah Kamaruzzaman,, et al.
Published: (2022)
by: Alya Nur Athirah Kamaruzzaman,, et al.
Published: (2022)
The role of Isocitrate Lyase (ICL1) in the metabolic adaptation of Candida albicans biofilms
by: Ishola, Oluwaseun Ayodeji, et al.
Published: (2016)
by: Ishola, Oluwaseun Ayodeji, et al.
Published: (2016)
The Role of Isocitrate Lyase (ICL1) in the Metabolic Adaptation of
Candida albicans Biofilms
by: Ishola, Oluwaseun Ayodeji, et al.
Published: (2016)
by: Ishola, Oluwaseun Ayodeji, et al.
Published: (2016)
The effect of oral probiotic Streptococcus salivarius K12 on Candida albicans biofilm formation
by: Mokhtar, Munirah, et al.
Published: (2019)
by: Mokhtar, Munirah, et al.
Published: (2019)
Suppression of non-albicans candida species (NAC) biofilm formation by probiotic Streptococcus salivarius
by: Soffian, Sharmeen Nellisa, et al.
Published: (2019)
by: Soffian, Sharmeen Nellisa, et al.
Published: (2019)
Coaggregation of Candida albicans, Actinomyces
naeslundii and Streptococcus mutans is Candida albicans
strain dependent
by: Arzmi, Mohd Hafiz, et al.
Published: (2015)
by: Arzmi, Mohd Hafiz, et al.
Published: (2015)
The effect of synbiotic Streptococcus salivarius K12 and Musa acuminata on Candida albicans biofilm formation
by: Rismayuddin, Nurul Alia Risma, et al.
Published: (2019)
by: Rismayuddin, Nurul Alia Risma, et al.
Published: (2019)
Protein profiling of Candida albicans planktonic and biofilm cultures upon exposure to Aureobasidin / Komathy Munusamy
by: Komathy, Munusamy
Published: (2019)
by: Komathy, Munusamy
Published: (2019)
The effect of streptococcus mutans on the growth and virulence expression of candida albicans in a mixed-species biofilm
by: Wang, XueLing
Published: (2024)
by: Wang, XueLing
Published: (2024)
The effect of synbiotic Streptococcus salivarius K12 and Yacon (Smallanthus sonchifoliuson) on Candida albicans biofilm formation
by: Rismayuddin, Nurul Alia Risma, et al.
Published: (2019)
by: Rismayuddin, Nurul Alia Risma, et al.
Published: (2019)
Characterisation of Allicin Activity in Candida Albicans
by: Khodavandi, Alireza
Published: (2011)
by: Khodavandi, Alireza
Published: (2011)
In vitro activity of xanthorrhizol isolated from the rhizome of javanese turmeric (Curcuma xanthorrhiza Roxb.) against Candida albicans biofilms.
by: Rukayadi, Yaya, et al.
Published: (2013)
by: Rukayadi, Yaya, et al.
Published: (2013)
Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota
by: Edwards, Christine, et al.
Published: (2017)
by: Edwards, Christine, et al.
Published: (2017)
Possible Mechanisms Of Action And Inhibition Of Biofilm By Cassia Spectabilis (DC.) Methanol Leaf Extract On Candida Albicans Cells And The Cytotoxicity Effect
by: Torey, Angeline Torey Ayah
Published: (2012)
by: Torey, Angeline Torey Ayah
Published: (2012)
Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans
by: McAlester, G., et al.
Published: (2008)
by: McAlester, G., et al.
Published: (2008)
Morphology Switching and Quorum Sensing in Candida Albicans Pathogenesis
by: Lim, Crystale Siew Ying
Published: (2010)
by: Lim, Crystale Siew Ying
Published: (2010)
Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates
by: Chin, Voon Kin, et al.
Published: (2013)
by: Chin, Voon Kin, et al.
Published: (2013)
Candida albicans skin infection in diabetic patients: An updated review of pathogenesis and management
by: Sakina, Shahabudin, et al.
Published: (2024)
by: Sakina, Shahabudin, et al.
Published: (2024)
Polymicrobial interactions of Candida albicans and its role in oral carcinogenesis
by: Arzmi, Mohd Hafiz, et al.
Published: (2019)
by: Arzmi, Mohd Hafiz, et al.
Published: (2019)
Kajian tindak balas candida albicans terhadap tekanan oksidatif
by: Wan Noorhayati Wan Ibrahim,, et al.
Published: (2006)
by: Wan Noorhayati Wan Ibrahim,, et al.
Published: (2006)
Antifungal activity of titanium dioxide nanoparticles against Candida albicans
by: Ahmad, Nurul Shahidah, et al.
Published: (2019)
by: Ahmad, Nurul Shahidah, et al.
Published: (2019)
N-Acetyl-d-glucosamine kinase and germ-tube formation in Candida albicans
by: Shepherd, Maxwell G., et al.
Published: (1980)
by: Shepherd, Maxwell G., et al.
Published: (1980)
Co-aggregation: Interaction of Candida albicans, Actinomyces
naeslundii and Streptococcus mutans
by: Arzmi, Mohd Hafiz, et al.
Published: (2014)
by: Arzmi, Mohd Hafiz, et al.
Published: (2014)
Intragenic and intergenic coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans
by: Arzmi, Mohd Hafiz, et al.
Published: (2013)
by: Arzmi, Mohd Hafiz, et al.
Published: (2013)
The role of Candida albicans candidalysin ECE1 gene in oral
carcinogenesis
by: Engku Nasrullah Satiman, Engku Anis Fariha, et al.
Published: (2020)
by: Engku Nasrullah Satiman, Engku Anis Fariha, et al.
Published: (2020)
Screening of the antifungal activity of Andrographis paniculata on Candida albicans and Trichophyton mentagrophytes
by: Sule, Abubakar, et al.
Published: (2010)
by: Sule, Abubakar, et al.
Published: (2010)
Cytokine Production by a Human Endothelial Cellline in Response to Candida Albicans
by: Lim, Pei Ching
Published: (2005)
by: Lim, Pei Ching
Published: (2005)
Metabolic adaptation via regulated enzyme degradation in the pathogenic yeast Candida albicans
by: Ting, Seng Yeat, et al.
Published: (2017)
by: Ting, Seng Yeat, et al.
Published: (2017)
Evaluation of the Protective Role for Candida albicans-reactive Immunoglobulin A against Oral Fungal Infection
by: Wulandari, E., et al.
Published: (2018)
by: Wulandari, E., et al.
Published: (2018)
Dissecting Candida albicans infection from the perspective of C. albicans virulence and omics approaches on host-pathogen interaction: a review
by: Chin, Voon Kin, et al.
Published: (2016)
by: Chin, Voon Kin, et al.
Published: (2016)
Similar Items
-
Metabolic Adaptation Of Candida Albicans Biofilms
by: Ayodeji, Ishola Oluwaseun
Published: (2015) -
Metabolic Adaptation Of Candida Albicans
Biofilms
by: Ayodeji, Ishola Oluwaseun
Published: (2015) -
Photoactivated riboflavin inhibits planktonic and biofilm growth of Candida albicans and non-albicans Candida species
by: Farah, Nuratiqah, et al.
Published: (2024) -
The effect of different composite on Candida albicans biofilm development
by: Nor Azemi, Siti Nor Humaira, et al.
Published: (2019) -
Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent
by: Arzmi, Mohd Hafiz, et al.
Published: (2016)