A convex geometry based blind source separation method for separating nonnegative sources

This paper presents a convex geometry (CG)-based method for blind separation of nonnegative sources. First, the unaccessible source matrix is normalized to be column-sum-to-one by mapping the available observation matrix. Then, its zero-samples are found by searching the facets of the convex hullspa...

Full description

Bibliographic Details
Main Authors: Yang, Z., Xiang, Y., Rong, Yue, Xie, K.
Format: Journal Article
Published: Institute of Electrical and Electronics Engineers 2014
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/46397
Description
Summary:This paper presents a convex geometry (CG)-based method for blind separation of nonnegative sources. First, the unaccessible source matrix is normalized to be column-sum-to-one by mapping the available observation matrix. Then, its zero-samples are found by searching the facets of the convex hullspanned by the mapped observations. Considering these zerosamples, a quadratic cost function with respect to each row of the unmixing matrix, together with a linear constraint in relation to the involved variables, is proposed. Upon which, an algorithm is presented to estimate the unmixing matrix by solving a classical convex optimization problem. Unlike the traditional blind source separation (BSS) methods, the CG-based method does not require the independence assumption, nor the uncorrelation assumption. Compared with the BSS methods that are specifically designed to distinguish between nonnegative sources, the proposed method requires a weaker sparsity condition. Provided simulation results illustrate the performance of our method.