Rapid solubility and mineral storage of CO2 in basalt

The long-term security of geologic carbon storage is critical to its success and public acceptance. Much of the security risk associated with geological carbon storage stems from its buoyancy. Gaseous and supercritical CO2 are less dense than formation waters, providing a driving force for it to esc...

Full description

Bibliographic Details
Main Authors: Gislason, S., Broecker, W., Gunnlaugsson, E., Snaebjornsdottir, S., Mesfin, K., Alfredsson, H., Aradottir, E., Sigfusson, B., Gunnarsson, I., Stute, M., Matter, J., Arnarson, M., Galeczka, I., Gudbrandsson, S., Stockman, G., Wolff-Boenisch, Domenik, Stefansson, A., Ragnheidardottir, E., Flaathen, T., Gysi, A., Olssen, J., Didriksen, K., Stipp, S., Menez, B., Oelkers, E.
Other Authors: Tim Dixon
Format: Conference Paper
Published: Elsevier 2014
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/45955
_version_ 1848757427704430592
author Gislason, S.
Broecker, W.
Gunnlaugsson, E.
Snaebjornsdottir, S.
Mesfin, K.
Alfredsson, H.
Aradottir, E.
Sigfusson, B.
Gunnarsson, I.
Stute, M.
Matter, J.
Arnarson, M.
Galeczka, I.
Gudbrandsson, S.
Stockman, G.
Wolff-Boenisch, Domenik
Stefansson, A.
Ragnheidardottir, E.
Flaathen, T.
Gysi, A.
Olssen, J.
Didriksen, K.
Stipp, S.
Menez, B.
Oelkers, E.
author2 Tim Dixon
author_facet Tim Dixon
Gislason, S.
Broecker, W.
Gunnlaugsson, E.
Snaebjornsdottir, S.
Mesfin, K.
Alfredsson, H.
Aradottir, E.
Sigfusson, B.
Gunnarsson, I.
Stute, M.
Matter, J.
Arnarson, M.
Galeczka, I.
Gudbrandsson, S.
Stockman, G.
Wolff-Boenisch, Domenik
Stefansson, A.
Ragnheidardottir, E.
Flaathen, T.
Gysi, A.
Olssen, J.
Didriksen, K.
Stipp, S.
Menez, B.
Oelkers, E.
author_sort Gislason, S.
building Curtin Institutional Repository
collection Online Access
description The long-term security of geologic carbon storage is critical to its success and public acceptance. Much of the security risk associated with geological carbon storage stems from its buoyancy. Gaseous and supercritical CO2 are less dense than formation waters, providing a driving force for it to escape back to the surface. This buoyancy can be eliminated by the dissolution of CO2 into water prior to, or during its injection into the subsurface. The dissolution makes it possible to inject into fractured rocks and further enhance mineral storage of CO2 especially if injected into silicate rocks rich in divalent metal cations such as basalts and ultra-mafic rocks. We have demonstrated the dissolution of CO2 into water during its injection into basalt leading to its geologic solubility storage in less than five minutes and potential geologic mineral storage within few years after injection [1–3]. The storage potential of CO2 within basaltic rocks is enormous. All the carbon released from burning of all fossil fuel on Earth, 5000 GtC, can theoretically be stored in basaltic rocks [4].
first_indexed 2025-11-14T09:27:56Z
format Conference Paper
id curtin-20.500.11937-45955
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:27:56Z
publishDate 2014
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-459552023-02-27T07:34:26Z Rapid solubility and mineral storage of CO2 in basalt Gislason, S. Broecker, W. Gunnlaugsson, E. Snaebjornsdottir, S. Mesfin, K. Alfredsson, H. Aradottir, E. Sigfusson, B. Gunnarsson, I. Stute, M. Matter, J. Arnarson, M. Galeczka, I. Gudbrandsson, S. Stockman, G. Wolff-Boenisch, Domenik Stefansson, A. Ragnheidardottir, E. Flaathen, T. Gysi, A. Olssen, J. Didriksen, K. Stipp, S. Menez, B. Oelkers, E. Tim Dixon Howard Herzog Sian Twinning mineral trapping mineral carbonation CarbFix solubility trapping carbon storage The long-term security of geologic carbon storage is critical to its success and public acceptance. Much of the security risk associated with geological carbon storage stems from its buoyancy. Gaseous and supercritical CO2 are less dense than formation waters, providing a driving force for it to escape back to the surface. This buoyancy can be eliminated by the dissolution of CO2 into water prior to, or during its injection into the subsurface. The dissolution makes it possible to inject into fractured rocks and further enhance mineral storage of CO2 especially if injected into silicate rocks rich in divalent metal cations such as basalts and ultra-mafic rocks. We have demonstrated the dissolution of CO2 into water during its injection into basalt leading to its geologic solubility storage in less than five minutes and potential geologic mineral storage within few years after injection [1–3]. The storage potential of CO2 within basaltic rocks is enormous. All the carbon released from burning of all fossil fuel on Earth, 5000 GtC, can theoretically be stored in basaltic rocks [4]. 2014 Conference Paper http://hdl.handle.net/20.500.11937/45955 10.1016/j.egypro.2014.11.489 Elsevier fulltext
spellingShingle mineral trapping
mineral carbonation
CarbFix
solubility trapping
carbon storage
Gislason, S.
Broecker, W.
Gunnlaugsson, E.
Snaebjornsdottir, S.
Mesfin, K.
Alfredsson, H.
Aradottir, E.
Sigfusson, B.
Gunnarsson, I.
Stute, M.
Matter, J.
Arnarson, M.
Galeczka, I.
Gudbrandsson, S.
Stockman, G.
Wolff-Boenisch, Domenik
Stefansson, A.
Ragnheidardottir, E.
Flaathen, T.
Gysi, A.
Olssen, J.
Didriksen, K.
Stipp, S.
Menez, B.
Oelkers, E.
Rapid solubility and mineral storage of CO2 in basalt
title Rapid solubility and mineral storage of CO2 in basalt
title_full Rapid solubility and mineral storage of CO2 in basalt
title_fullStr Rapid solubility and mineral storage of CO2 in basalt
title_full_unstemmed Rapid solubility and mineral storage of CO2 in basalt
title_short Rapid solubility and mineral storage of CO2 in basalt
title_sort rapid solubility and mineral storage of co2 in basalt
topic mineral trapping
mineral carbonation
CarbFix
solubility trapping
carbon storage
url http://hdl.handle.net/20.500.11937/45955