Immiscible Displacements and Capillary Trapping in CO2 Storage
We measure the residual non-wetting phase saturation of super-critical carbon dioxide in a Berea sandstone core. We use the porous plate method while a stirred reactor ensures equilibrium between the carbon dioxide and brine. We also measure carbon dioxide-brine contact angles on the porous plate to...
| Main Authors: | , , , , |
|---|---|
| Other Authors: | |
| Format: | Conference Paper |
| Published: |
ICGGCT
2010
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/45810 |
| Summary: | We measure the residual non-wetting phase saturation of super-critical carbon dioxide in a Berea sandstone core. We use the porous plate method while a stirred reactor ensures equilibrium between the carbon dioxide and brine. We also measure carbon dioxide-brine contact angles on the porous plate to understand wetting behavior in the experiment. The application of the work is for carbon dioxide storage in aquifers, where capillary trapping is a rapid and effective mechanism to render the injected fluid immobile. The experiment was performed at temperature and pressure representative of potential subsurface storage formations. The measured residual saturation is 37% which is lower than the measured residual for an oil-brine system on a similar core (48%), but higher than measured by other authors for super-critical CO2 in Berea sandstone. We suggest that super-critical CO2 is still non-wetting in sandstones with considerable trapping and discuss the implications for CO2 storage in aquifers. |
|---|