A trust-based bio-inspired approach for credit lending decisions

Credit scoring computation essentially involves taking into account various financial factors and the previous behavior of the credit requesting person. There is a strong degree of correlation between the compliance level and the credit score of a given entity. The concept of trust has been widely u...

Full description

Bibliographic Details
Main Authors: Mirtalaei, M., Saberi, Morteza, Hussain, Omar, Ashjari, B., Hussain, Farookh Khadeer
Format: Journal Article
Published: Springer Vienna 2012
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/45722
Description
Summary:Credit scoring computation essentially involves taking into account various financial factors and the previous behavior of the credit requesting person. There is a strong degree of correlation between the compliance level and the credit score of a given entity. The concept of trust has been widely used and applied in the existing literature to determine the compliance level of an entity. However it has not been studied in the context of credit scoring literature. In order to address this shortcoming, in this paper we propose a six-step bio-inspired methodology for trust-based credit lending decisions by credit institutions. The proposed methodology makes use of an artificial neural network-based model to classify the (potential) customers into various categories. To show the applicability and superiority of the proposed algorithm, it is applied to a credit-card dataset obtained from the UCI repository.