Tuning a gravimetric quasigeoid to GPS-levelling by non-stationary least-squares collocation

This paper addresses implementation issues in order to apply non-stationary least-squares collocation (LSC) to a practical geodetic problem: fitting a gravimetric quasigeoid to discrete geometric quasigeoid heights at a local scale. This yields a surface that is useful for direct GPS heighting. Non-...

Full description

Bibliographic Details
Main Authors: Darbeheshti, Neda, Featherstone, Will
Format: Journal Article
Published: Springer - Verlag 2010
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/4551
Description
Summary:This paper addresses implementation issues in order to apply non-stationary least-squares collocation (LSC) to a practical geodetic problem: fitting a gravimetric quasigeoid to discrete geometric quasigeoid heights at a local scale. This yields a surface that is useful for direct GPS heighting. Non-stationary covariance functions and a nonstationary model of the mean were applied to residual gravimetric quasigeoid determination by planar LSC in the Perth region ofWestern Australia. The non-stationarymodel of the mean did not change the LSC results significantly. However, elliptical kernels in non-stationary covariance functions were used successfully to create an iterative optimisation loop to decrease the difference between the gravimetric quasigeoid and geometric quasigeoid at 99 GPS-levelling points to a user-prescribed tolerance.