Tuning a gravimetric quasigeoid to GPS-levelling by non-stationary least-squares collocation
This paper addresses implementation issues in order to apply non-stationary least-squares collocation (LSC) to a practical geodetic problem: fitting a gravimetric quasigeoid to discrete geometric quasigeoid heights at a local scale. This yields a surface that is useful for direct GPS heighting. Non-...
| Main Authors: | , |
|---|---|
| Format: | Journal Article |
| Published: |
Springer - Verlag
2010
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/4551 |
| Summary: | This paper addresses implementation issues in order to apply non-stationary least-squares collocation (LSC) to a practical geodetic problem: fitting a gravimetric quasigeoid to discrete geometric quasigeoid heights at a local scale. This yields a surface that is useful for direct GPS heighting. Non-stationary covariance functions and a nonstationary model of the mean were applied to residual gravimetric quasigeoid determination by planar LSC in the Perth region ofWestern Australia. The non-stationarymodel of the mean did not change the LSC results significantly. However, elliptical kernels in non-stationary covariance functions were used successfully to create an iterative optimisation loop to decrease the difference between the gravimetric quasigeoid and geometric quasigeoid at 99 GPS-levelling points to a user-prescribed tolerance. |
|---|