Petrophysical data prediction from seismic attributes using committee fuzzy inference system

This study presents an intelligent model based on fuzzy systems for making aquantitative formulation between seismic attributes and petrophysical data. The proposed methodology comprises two major steps. Firstly, the petrophysical data, including water saturation (Sw) and porosity, are predicted fro...

Full description

Bibliographic Details
Main Authors: Kadkhodaie Ilkhchi, A., Rezaee, M. Reza, Rahimpour-Bonab, H., Chehrazi, A.
Format: Journal Article
Published: Elsevier 2009
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/45044
Description
Summary:This study presents an intelligent model based on fuzzy systems for making aquantitative formulation between seismic attributes and petrophysical data. The proposed methodology comprises two major steps. Firstly, the petrophysical data, including water saturation (Sw) and porosity, are predicted from seismic attributes using various Fuzzy Inference Systems (FIS), including Sugeno (SFIS), Mamdani (MFIS) and Larsen (LFIS). Secondly, a Committee Fuzzy Inference System (CFIS) is constructed using a hybrid Genetic Algorithms-Pattern Search (GA-PS) technique. The inputs of the CFIS model are the output averages of theFIS petrophysical data. The methodology is illustrated using 3D seismic and petrophysical data of 11 wells of an Iranian offshore oil field in the Persian Gulf. The performance of the CFIS model is compared with a Probabilistic Neural Network (PNN). The results show that the CFIS method performed better than neural network, the best individual fuzzy model and a simple averaging method.