Evaluation of a Multilocus Indel DNA Region for the Detection of the Wheat Tan Spot Pathogen Pyrenophora tritici-repentis
Tan spot or yellow (leaf) spot disease of wheat (Triticum spp.) is caused by Pyrenophora tritici-repentis, a necrotrophic fungal pathogen that is wide-spread throughout the main wheat-growing regions in the world. This disease is currently the single most economically important crop disease in Austr...
| Main Authors: | See, Pao Theen, Moffat, Caroline, Morina, J., Oliver, Richard |
|---|---|
| Format: | Journal Article |
| Published: |
American Phytopathological Society
2016
|
| Online Access: | http://apsjournals.apsnet.org/doi/10.1094/PDIS-03-16-0262-RE http://hdl.handle.net/20.500.11937/4504 |
Similar Items
Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis
by: Moffat, Caroline, et al.
Published: (2014)
by: Moffat, Caroline, et al.
Published: (2014)
Evaluation of Pyrenophora tritici-repentis Infection of Wheat Heads
by: See, Pao Theen, et al.
Published: (2020)
by: See, Pao Theen, et al.
Published: (2020)
Proteomics of the wheat tan spot pathogen Pyrenophora tritici-repentis 06 Biological Sciences 0607 Plant Biology
by: Moffat, Caroline, et al.
Published: (2018)
by: Moffat, Caroline, et al.
Published: (2018)
Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity
by: Moolhuijzen, Paula, et al.
Published: (2018)
by: Moolhuijzen, Paula, et al.
Published: (2018)
Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot
by: Corsi, B., et al.
Published: (2020)
by: Corsi, B., et al.
Published: (2020)
Genomic distribution of a novel Pyrenophora tritici-repentis ToxA insertion element
by: Moolhuijzen, Paula, et al.
Published: (2018)
by: Moolhuijzen, Paula, et al.
Published: (2018)
Virulence assessment of Australian Pyrenophora tritici-repentis isolates
by: See, Pao Theen, et al.
Published: (2021)
by: See, Pao Theen, et al.
Published: (2021)
PacBio genome sequencing reveals new insights into the genomic organisation of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis
by: Moolhuijzen, Paula, et al.
Published: (2020)
by: Moolhuijzen, Paula, et al.
Published: (2020)
Correction to: PacBio genome sequencing reveals new insights into the genomic organisation of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis
by: Moolhuijzen, Paula, et al.
Published: (2021)
by: Moolhuijzen, Paula, et al.
Published: (2021)
The first genome assembly of fungal pathogen Pyrenophora tritici-repentis race 1 isolate using Oxford Nanopore MinION sequencing
by: Moolhuijzen, Paula, et al.
Published: (2021)
by: Moolhuijzen, Paula, et al.
Published: (2021)
A new PacBio genome sequence of an Australian Pyrenophora tritici-repentis race 1 isolate
by: Moolhuijzen, Paula, et al.
Published: (2019)
by: Moolhuijzen, Paula, et al.
Published: (2019)
An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis
by: Jacques, Silke, et al.
Published: (2021)
by: Jacques, Silke, et al.
Published: (2021)
The identification and deletion of the polyketide synthase-nonribosomal peptide synthase gene responsible for the production of the phytotoxic triticone A/B in the wheat fungal pathogen Pyrenophora tritici-repentis
by: Rawlinson, Catherine, et al.
Published: (2019)
by: Rawlinson, Catherine, et al.
Published: (2019)
Exploration of wheat and pathogen transcriptomes during tan spot infection
by: Moolhuijzen, Paula, et al.
Published: (2018)
by: Moolhuijzen, Paula, et al.
Published: (2018)
Heterologous Expression of the Pyrenophora tritici-repentis Effector Proteins ToxA and ToxB, and the Prevalence of Effector Sensitivity in Australian Cereal Crops
by: Moffat, Caroline, et al.
Published: (2019)
by: Moffat, Caroline, et al.
Published: (2019)
Characterising the specialised metabolism of the wheat Pyrenophora tritici-repentis interaction
by: Rawlinson, Catherine
Published: (2020)
by: Rawlinson, Catherine
Published: (2020)
Evaluation of a novel molecular marker associated with the tan spot disease response in wheat
by: See, Pao Theen, et al.
Published: (2021)
by: See, Pao Theen, et al.
Published: (2021)
Emergence of tan spot disease caused by toxigenic Pyrenophora tritici-repentis in Australia is not associated with increased deployment of toxin-sensitive cultivars
by: Oliver, Richard, et al.
Published: (2008)
by: Oliver, Richard, et al.
Published: (2008)
A genome-wide genetic linkage map and reference quality genome sequence for a new race in the wheat pathogen Pyrenophora tritici-repentis
by: Kariyawasam, G.K., et al.
Published: (2021)
by: Kariyawasam, G.K., et al.
Published: (2021)
Evaluating the importance of the tan spot ToxA–Tsn1 interaction in Australian wheat varieties
by: See, Pao Theen, et al.
Published: (2018)
by: See, Pao Theen, et al.
Published: (2018)
Ubiquity of ToxA and absence of ToxB in Australian populationsof Pyrenophora tritici-repentis
by: Antoni, E., et al.
Published: (2010)
by: Antoni, E., et al.
Published: (2010)
A conserved hypothetical gene is required but not sufficient for Ptr ToxC production in Pyrenophora tritici-repentis.
by: Shi, Gongjun State, et al.
Published: (2022)
by: Shi, Gongjun State, et al.
Published: (2022)
Comparative genomics of a plant-pathogenic fungus, pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence
by: Manning, V., et al.
Published: (2013)
by: Manning, V., et al.
Published: (2013)
Diseases affecting wheat: tan spot
by: Moffat, Caroline, et al.
Published: (2018)
by: Moffat, Caroline, et al.
Published: (2018)
Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis
by: Tan, Kar-Chun, et al.
Published: (2012)
by: Tan, Kar-Chun, et al.
Published: (2012)
Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat
by: Dinglasan, E.G., et al.
Published: (2021)
by: Dinglasan, E.G., et al.
Published: (2021)
Expansion and conservation of biosynthetic gene clusters in pathogenic Pyrenophora spp.
by: Moolhuijzen, Paula, et al.
Published: (2020)
by: Moolhuijzen, Paula, et al.
Published: (2020)
Leaf yellowing of the wheat cultivar Mace in the absence of yellowspot disease
by: Moffat, Caroline, et al.
Published: (2014)
by: Moffat, Caroline, et al.
Published: (2014)
Necrotrophic Pathogens of Wheat
by: Oliver, Richard, et al.
Published: (2016)
by: Oliver, Richard, et al.
Published: (2016)
A mutagenomic dissection of virulence in the fungal wheat pathogen Zymoseptoria tritici
by: Blyth, Hannah R.
Published: (2022)
by: Blyth, Hannah R.
Published: (2022)
A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres
by: Ellwood, Simon, et al.
Published: (2010)
by: Ellwood, Simon, et al.
Published: (2010)
Evolution of three Pyrenophora cereal pathogens: recent divergence, speciation and evolution of non-coding DNA
by: Ellwood, Simon, et al.
Published: (2012)
by: Ellwood, Simon, et al.
Published: (2012)
Vavilov wheat accessions provide useful sources of resistance to tan spot (syn. yellow spot) of wheat
by: Dinglasan, E., et al.
Published: (2018)
by: Dinglasan, E., et al.
Published: (2018)
Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics
by: Yang, F., et al.
Published: (2015)
by: Yang, F., et al.
Published: (2015)
A functionally conserved Zn2 Cys6 binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host-specific virulence of two major Pleosporales fungal pathogens of wheat.
by: Rybak, K., et al.
Published: (2017)
by: Rybak, K., et al.
Published: (2017)
Pyrenophora teres: Profile of an increasingly damaging barley pathogen
by: Zhaohui, L., et al.
Published: (2011)
by: Zhaohui, L., et al.
Published: (2011)
The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system
by: Liu, Z., et al.
Published: (2006)
by: Liu, Z., et al.
Published: (2006)
Investigating disease tolerance to Zymoseptoria tritici in wheat
by: Kock Appelgren, Petra S.
Published: (2017)
by: Kock Appelgren, Petra S.
Published: (2017)
A genomics-based discovery pipeline for Pseudomonas derived antifungals effective against the wheat pathogen Zymoseptoria tritici
by: Lund, George
Published: (2023)
by: Lund, George
Published: (2023)
The tolerance of wheat (Triticum aestivum L.) to Septori tritici blotch
by: Collin, François
Published: (2018)
by: Collin, François
Published: (2018)
Similar Items
-
Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis
by: Moffat, Caroline, et al.
Published: (2014) -
Evaluation of Pyrenophora tritici-repentis Infection of Wheat Heads
by: See, Pao Theen, et al.
Published: (2020) -
Proteomics of the wheat tan spot pathogen Pyrenophora tritici-repentis 06 Biological Sciences 0607 Plant Biology
by: Moffat, Caroline, et al.
Published: (2018) -
Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity
by: Moolhuijzen, Paula, et al.
Published: (2018) -
Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot
by: Corsi, B., et al.
Published: (2020)