Chromium deposition and poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3 cathode of solid oxide fuel cells
Chromium deposition and poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF) cathodes of solid oxide fuel cells are investigated. BSCF cathode shows an excellent and stable performance in the absence of metallic interconnects. However, in the presence of a chromia-forming metallic interconnect performance o...
| Main Authors: | Kim, Y., Chen, X., Jiang, San Ping, Bae, J. |
|---|---|
| Format: | Journal Article |
| Published: |
Electrochemical Society
2011
|
| Online Access: | http://hdl.handle.net/20.500.11937/44841 |
Similar Items
Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3-d + Sm0.2Ce0.8O1.9 composite cathode
by: Wang, K., et al.
Published: (2008)
by: Wang, K., et al.
Published: (2008)
Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3-[delta] cathodes of solid oxide fuel cells
by: Chen, J., et al.
Published: (2009)
by: Chen, J., et al.
Published: (2009)
Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-d cathodes prepared via electroless deposition
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Polarization Promoted Chemical Reaction between Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode and Ceria Based Electrolytes of Solid Oxide Fuel Cells
by: Yung, H., et al.
Published: (2012)
by: Yung, H., et al.
Published: (2012)
Ba0.5Sr0.5Co0.8Fe0.2O3-delta ceramic hollow-fiber membranes for oxygen permeation
by: Liu, Shaomin, et al.
Published: (2006)
by: Liu, Shaomin, et al.
Published: (2006)
Evaluation of (Ba 0.5Sr 0.5) 0.85Gd 0.15Co 0.8Fe 0.2O 3-[delta] cathode for intermediate temperature solid oxide fuel cell
by: Li, Z., et al.
Published: (2012)
by: Li, Z., et al.
Published: (2012)
Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes
by: Chen, Kongfa, et al.
Published: (2014)
by: Chen, Kongfa, et al.
Published: (2014)
Silver-modified Ba0.5Sr0.5Co0.8Fe 0.2O3-d as cathodes for a proton conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
In situ templating synthesis of conic Ba0.5Sr 0.5Co0.8Fe0.2O3-d perovskite at elevated temperature
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-d perovskite as oxygen semi-permeable membrane
by: Zeng, P., et al.
Published: (2007)
by: Zeng, P., et al.
Published: (2007)
Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3-8 pervoskite membranes for air separation
by: Chen, Z., et al.
Published: (2009)
by: Chen, Z., et al.
Published: (2009)
Surface exchange and bulk diffusion properties of Ba0.5Sr 0.5Co0.8Fe0.2O3-d mixed conductor
by: Chen, D., et al.
Published: (2011)
by: Chen, D., et al.
Published: (2011)
Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-δ
by: Yang, T., et al.
Published: (2018)
by: Yang, T., et al.
Published: (2018)
Performance variability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode on proton-conducting electrolyte SOFCs with Ag and Au current collectors
by: Wan, T., et al.
Published: (2017)
by: Wan, T., et al.
Published: (2017)
The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3-[delta] perovskite
by: Chen, Y., et al.
Published: (2014)
by: Chen, Y., et al.
Published: (2014)
Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-d as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2008)
by: Lin, Y., et al.
Published: (2008)
Enhanced Chromium Tolerance of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode by BaO Infiltration
by: Chen, K., et al.
Published: (2015)
by: Chen, K., et al.
Published: (2015)
New morphological Ba0.5Sr0.5Co0.8Fe0.2O3-alpha hollow fibre membranes with high oxygen permeation fluxes
by: Han, D., et al.
Published: (2013)
by: Han, D., et al.
Published: (2013)
Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite in Energy Storage and Conversion: Past, Present, and Future
by: Xu, Xiaomin, et al.
Published: (2021)
by: Xu, Xiaomin, et al.
Published: (2021)
Properties and performance of A-site deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-d for oxygen permeating membrane
by: Ge, L., et al.
Published: (2007)
by: Ge, L., et al.
Published: (2007)
Zirconium stabilized Ba0.5Sr0.5(Co0.8-xZrx)Fe0.2O3-α perovskite hollow fibre membranes for oxygen separation
by: Meng, X., et al.
Published: (2011)
by: Meng, X., et al.
Published: (2011)
Electrophoretic deposition of Ba0.5Sr0.5Co0.8Fe0.2O3−∞SDC carbonate composite coating on solid oxide fuel cell interconnect
by: Tan, K. H., et al.
Published: (2018)
by: Tan, K. H., et al.
Published: (2018)
Chromium deposition and poisoning on (La0.6 Sr0.4-x Bax) (Co0.2 Fe0.8) O3 (0=x= 0.4) cathodes of solid oxide fuel cells
by: Chen, X., et al.
Published: (2008)
by: Chen, X., et al.
Published: (2008)
Structure, electrical and thermal properties of (Ba0.5Sr0.5)1-xGdxCo0.8Fe0.2O3-d perovskite as a solid-oxide fuel cell cathode
by: Li, Z., et al.
Published: (2012)
by: Li, Z., et al.
Published: (2012)
Effect of strontium content on chromium deposition and poisoning in Ba1-xSrxCo0.8Fe0.2O3-δ (0.3≤ x ≤0.7) cathodes of solid oxide fuel cells
by: Kim, Y., et al.
Published: (2012)
by: Kim, Y., et al.
Published: (2012)
Electrochemical Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ in Symmetric Cells With Sm0.2Ce0.8O1.9 Electrolyte for Nitric Oxide Reduction Reaction
by: Shi, Huangang, et al.
Published: (2020)
by: Shi, Huangang, et al.
Published: (2020)
Ce0.9Gd0.1O2−δ membranes coated with porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ for oxygen separation
by: Zhang, C., et al.
Published: (2015)
by: Zhang, C., et al.
Published: (2015)
Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-d (x > 0) perovskite as a solid-oxide fuel cell cathode
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3-d oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Surface segregation and chromium deposition and poisoning on La 0.6Sr0.4Co0.2Fe0.8O 3-d cathodes of solid oxide fuel cells
by: Zhao, L., et al.
Published: (2013)
by: Zhao, L., et al.
Published: (2013)
Effect of temperature on the chromium deposition and poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells
by: Wang, C., et al.
Published: (2014)
by: Wang, C., et al.
Published: (2014)
Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3-(delta) nanofilms with tunable oxidation state
by: Chen, G., et al.
Published: (2017)
by: Chen, G., et al.
Published: (2017)
Effect of foreign oxides on the phase structure, sintering and transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as ceramic membranes for oxygen separation
by: Ran, R., et al.
Published: (2011)
by: Ran, R., et al.
Published: (2011)
Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe 0.2O3-d electrodes in solid oxide fuel cells
by: Guo, Y., et al.
Published: (2011)
by: Guo, Y., et al.
Published: (2011)
Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3-d membranes
by: Gao, D., et al.
Published: (2011)
by: Gao, D., et al.
Published: (2011)
La0.6Sr0.4Co0.2Fe0.8O3-d Hollow Fibre Membrane Performance Improvement by Coating of Ba0.5Sr0.5Co0.9Nb0.1O3-d Porous Layer
by: Han, D., et al.
Published: (2014)
by: Han, D., et al.
Published: (2014)
Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3-d electrode prepared by electroless deposition technique
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3-8 perovskite with improved operational stability
by: Ge, L., et al.
Published: (2008)
by: Ge, L., et al.
Published: (2008)
Toward Enhanced Oxygen Evolution on Perovskite Oxides Synthesized from Different Approaches: A Case Study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ
by: Xu, X., et al.
Published: (2016)
by: Xu, X., et al.
Published: (2016)
Similar Items
-
Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3-d + Sm0.2Ce0.8O1.9 composite cathode
by: Wang, K., et al.
Published: (2008) -
Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3-[delta] cathodes of solid oxide fuel cells
by: Chen, J., et al.
Published: (2009) -
Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-d cathodes prepared via electroless deposition
by: Zhou, W., et al.
Published: (2008) -
Polarization Promoted Chemical Reaction between Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode and Ceria Based Electrolytes of Solid Oxide Fuel Cells
by: Yung, H., et al.
Published: (2012) -
Ba0.5Sr0.5Co0.8Fe0.2O3-delta ceramic hollow-fiber membranes for oxygen permeation
by: Liu, Shaomin, et al.
Published: (2006)