40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: Refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province

The Madagascar Cretaceous igneous province exposed in the Mahajanga basin is represented by basalt and basaltic andesite lavas. New 40Ar–39Ar plateau ages (92.3 ± 2.0 Ma and 91.5 ± 1.3 Ma) indicate that the magmatism in the Mahajanga basin started about 92 Ma ago. Four geochemically distinct magma t...

Full description

Bibliographic Details
Main Authors: Cucciniello, C., Melluso, L., Jourdan, Fred, Mahoney, J., Meisel, T., Morra, V.
Format: Journal Article
Published: Cambridge University Press 2013
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/44742
_version_ 1848757088834027520
author Cucciniello, C.
Melluso, L.
Jourdan, Fred
Mahoney, J.
Meisel, T.
Morra, V.
author_facet Cucciniello, C.
Melluso, L.
Jourdan, Fred
Mahoney, J.
Meisel, T.
Morra, V.
author_sort Cucciniello, C.
building Curtin Institutional Repository
collection Online Access
description The Madagascar Cretaceous igneous province exposed in the Mahajanga basin is represented by basalt and basaltic andesite lavas. New 40Ar–39Ar plateau ages (92.3 ± 2.0 Ma and 91.5 ± 1.3 Ma) indicate that the magmatism in the Mahajanga basin started about 92 Ma ago. Four geochemically distinct magma types (Groups A–D) are present. Group A and C rocks have low to moderate TiO2 (1.2–2.6 wt%), Nb (3–9 μg g−1) and Zr (82–200 μg g−1), and show large variations in ɛNdi (+0.1 to −10.8), 206Pb/204Pb (15.28 to 16.33) and γOs (+11.4 to +7378). The large isotopic variations, particularly in Os, Nd and Pb isotopic compositions, are likely due to crustal contamination. The low Pb isotope ratios observed in the Group A and C rocks suggest involvement of continental crust with low μ (238U/204Pb). Group B and D rocks have moderate to high TiO2 (2.2–4.9 wt%), Nb (8–24 μg g−1) and Zr (120–327 μg g−1). Age-corrected isotopes of Group B and D lavas show a small range in ɛNdi (+1.0 to +4.0) and a wide range in γOs (+128 to +1182). Values of 207Pb/204Pb are within the range for Groups A and C, but the Group D 206Pb/204Pb (16.52–17.08) and 208Pb/204Pb (37.51–38.01) values are higher, indicating a different crustal contaminant. Pb isotopic values of the Group B rocks seem to reflect the isotopic features of their mantle source. The magma groups of Mahajanga display a wide range of trace element and isotopic compositions that cannot be explained only by open-system crystallization processes but, rather, by distinct mantle sources.
first_indexed 2025-11-14T09:22:32Z
format Journal Article
id curtin-20.500.11937-44742
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:22:32Z
publishDate 2013
publisher Cambridge University Press
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-447422017-09-13T14:14:26Z 40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: Refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province Cucciniello, C. Melluso, L. Jourdan, Fred Mahoney, J. Meisel, T. Morra, V. Cretaceous basalts isotope geochemistry Madagascar ages The Madagascar Cretaceous igneous province exposed in the Mahajanga basin is represented by basalt and basaltic andesite lavas. New 40Ar–39Ar plateau ages (92.3 ± 2.0 Ma and 91.5 ± 1.3 Ma) indicate that the magmatism in the Mahajanga basin started about 92 Ma ago. Four geochemically distinct magma types (Groups A–D) are present. Group A and C rocks have low to moderate TiO2 (1.2–2.6 wt%), Nb (3–9 μg g−1) and Zr (82–200 μg g−1), and show large variations in ɛNdi (+0.1 to −10.8), 206Pb/204Pb (15.28 to 16.33) and γOs (+11.4 to +7378). The large isotopic variations, particularly in Os, Nd and Pb isotopic compositions, are likely due to crustal contamination. The low Pb isotope ratios observed in the Group A and C rocks suggest involvement of continental crust with low μ (238U/204Pb). Group B and D rocks have moderate to high TiO2 (2.2–4.9 wt%), Nb (8–24 μg g−1) and Zr (120–327 μg g−1). Age-corrected isotopes of Group B and D lavas show a small range in ɛNdi (+1.0 to +4.0) and a wide range in γOs (+128 to +1182). Values of 207Pb/204Pb are within the range for Groups A and C, but the Group D 206Pb/204Pb (16.52–17.08) and 208Pb/204Pb (37.51–38.01) values are higher, indicating a different crustal contaminant. Pb isotopic values of the Group B rocks seem to reflect the isotopic features of their mantle source. The magma groups of Mahajanga display a wide range of trace element and isotopic compositions that cannot be explained only by open-system crystallization processes but, rather, by distinct mantle sources. 2013 Journal Article http://hdl.handle.net/20.500.11937/44742 10.1017/S0016756812000088 Cambridge University Press fulltext
spellingShingle Cretaceous
basalts
isotope geochemistry
Madagascar
ages
Cucciniello, C.
Melluso, L.
Jourdan, Fred
Mahoney, J.
Meisel, T.
Morra, V.
40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: Refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province
title 40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: Refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province
title_full 40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: Refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province
title_fullStr 40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: Refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province
title_full_unstemmed 40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: Refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province
title_short 40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: Refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province
title_sort 40ar–39ar ages and isotope geochemistry of cretaceous basalts in northern madagascar: refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province
topic Cretaceous
basalts
isotope geochemistry
Madagascar
ages
url http://hdl.handle.net/20.500.11937/44742