New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage
© 2016 The Author(s).The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The...
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Nature Publishing Group
2016
|
| Online Access: | http://hdl.handle.net/20.500.11937/44477 |
| _version_ | 1848757012468334592 |
|---|---|
| author | Yadav, D. Rai, R. Kumar, N. Singh, S. Misra, S. Sharma, P. Shaw, P. Pérez-Sánchez, H. Mancera, Ricardo Choi, E. Kim, M. Pratap, R. |
| author_facet | Yadav, D. Rai, R. Kumar, N. Singh, S. Misra, S. Sharma, P. Shaw, P. Pérez-Sánchez, H. Mancera, Ricardo Choi, E. Kim, M. Pratap, R. |
| author_sort | Yadav, D. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | © 2016 The Author(s).The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage. |
| first_indexed | 2025-11-14T09:21:19Z |
| format | Journal Article |
| id | curtin-20.500.11937-44477 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T09:21:19Z |
| publishDate | 2016 |
| publisher | Nature Publishing Group |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-444772017-09-13T14:13:05Z New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage Yadav, D. Rai, R. Kumar, N. Singh, S. Misra, S. Sharma, P. Shaw, P. Pérez-Sánchez, H. Mancera, Ricardo Choi, E. Kim, M. Pratap, R. © 2016 The Author(s).The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage. 2016 Journal Article http://hdl.handle.net/20.500.11937/44477 10.1038/srep38128 http://creativecommons.org/licenses/by/4.0/ Nature Publishing Group fulltext |
| spellingShingle | Yadav, D. Rai, R. Kumar, N. Singh, S. Misra, S. Sharma, P. Shaw, P. Pérez-Sánchez, H. Mancera, Ricardo Choi, E. Kim, M. Pratap, R. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage |
| title | New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage |
| title_full | New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage |
| title_fullStr | New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage |
| title_full_unstemmed | New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage |
| title_short | New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage |
| title_sort | new arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated dna damage |
| url | http://hdl.handle.net/20.500.11937/44477 |