An ontology-based segmentation scheme for tracking postnatal changes in the developing rodent brain with MRI

The postnatal period of neurodevelopment has been implicated in a number of brain disorders including autism and schizophrenia. Rodent models have proven to be invaluable in advancing our understanding of the human brain, and will almost certainly play a pivotal role in future studies on postnatal n...

Full description

Bibliographic Details
Main Authors: Calabrese, E., Johnson, G., Watson, Charles
Format: Journal Article
Published: Academic Press 2013
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/43279
Description
Summary:The postnatal period of neurodevelopment has been implicated in a number of brain disorders including autism and schizophrenia. Rodent models have proven to be invaluable in advancing our understanding of the human brain, and will almost certainly play a pivotal role in future studies on postnatal neurodevelopment. The growing field of magnetic resonance microscopy has the potential to revolutionize our understanding of neurodevelopment, if it can be successfully and appropriately assimilated into the vast body of existing neuroscience research. In this study, we demonstrate the utility of a developmental neuro-ontology designed specifically for tracking regional changes in MR biomarkers throughout postnatal neurodevelopment. Using this ontological classification as a segmentation guide, we track regional changes in brain volume in rats between postnatal day zero and postnatal day 80 and demonstrate differential growth rates in axial versus paraxial brain regions. Both the ontology and the associated label volumes are provided as a foundation for future MR-based studies of postnatal neurodevelopment in normal and disease states.