Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells

A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H3PW12O40, abbreviated as HPW or PWA)–silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW12O40 3- species. The self...

Full description

Bibliographic Details
Main Authors: Tang, H., Pan, M., Jiang, San ping
Format: Journal Article
Published: The Royal Society of Chemistry 2011
Online Access:http://hdl.handle.net/20.500.11937/43222
_version_ 1848756630736338944
author Tang, H.
Pan, M.
Jiang, San ping
author_facet Tang, H.
Pan, M.
Jiang, San ping
author_sort Tang, H.
building Curtin Institutional Repository
collection Online Access
description A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H3PW12O40, abbreviated as HPW or PWA)–silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW12O40 3- species. The self-assembled HPW–silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption–desorption isotherms, ion exchange capacity, proton conductivity and solid-state 31P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2–3.5 nm in diameter. The 31P NMR results indicates that there are ( SiOH2 +)(H2PW12O40 -) species in the HPW–silica nanocomposites. A HPW–silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol-1 and proton conductivity of 0.076 S cm-1 at 100 ◦C and 100 RH%, and an activation energy of 26.1 kJ mol-1 and proton conductivity of 0.05 S cm-1 at 200 ◦C with no external humidification. A fuel cell based on a 165 mm thick HPW–silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm-2 for methanol and ethanol fuels, respectively, at 200 ◦C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW–silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).
first_indexed 2025-11-14T09:15:15Z
format Journal Article
id curtin-20.500.11937-43222
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:15:15Z
publishDate 2011
publisher The Royal Society of Chemistry
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-432222017-09-13T15:55:52Z Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells Tang, H. Pan, M. Jiang, San ping A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H3PW12O40, abbreviated as HPW or PWA)–silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW12O40 3- species. The self-assembled HPW–silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption–desorption isotherms, ion exchange capacity, proton conductivity and solid-state 31P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2–3.5 nm in diameter. The 31P NMR results indicates that there are ( SiOH2 +)(H2PW12O40 -) species in the HPW–silica nanocomposites. A HPW–silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol-1 and proton conductivity of 0.076 S cm-1 at 100 ◦C and 100 RH%, and an activation energy of 26.1 kJ mol-1 and proton conductivity of 0.05 S cm-1 at 200 ◦C with no external humidification. A fuel cell based on a 165 mm thick HPW–silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm-2 for methanol and ethanol fuels, respectively, at 200 ◦C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW–silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs). 2011 Journal Article http://hdl.handle.net/20.500.11937/43222 10.1039/c1dt10150a The Royal Society of Chemistry restricted
spellingShingle Tang, H.
Pan, M.
Jiang, San ping
Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells
title Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells
title_full Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells
title_fullStr Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells
title_full_unstemmed Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells
title_short Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells
title_sort self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells
url http://hdl.handle.net/20.500.11937/43222