Non-stationary covariance function modelling in 2D least-squares collocation

Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the ob-served data. However, the assumption that the spatial dependence is constant through-out the region of interest may sometimes be violated....

Full description

Bibliographic Details
Main Authors: Darbeheshti, Neda, Featherstone, Will
Format: Journal Article
Published: Springer - Verlag 2009
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/42464
Description
Summary:Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the ob-served data. However, the assumption that the spatial dependence is constant through-out the region of interest may sometimes be violated. Assuming a stationary covariance structure can result in over-smoothing of, e.g., the gravity field in mountains and under-smoothing in great plains. We introduce the kernel convolution method from spatial statistics for non-stationary covariance structures, and demonstrate its advantage fordealing with non-stationarity in geodetic data. We then compared stationary and non-stationary covariance functions in 2D LSC to the empirical example of gravity anomaly interpolation near the Darling Fault, Western Australia, where the field is anisotropic and non-stationary. The results with non-stationary covariance functions are better than standard LSC in terms of formal errors and cross-validation against data not used in the interpolation, demonstrating that the use of non-stationary covariance functions can improve upon standard (stationary) LSC.