Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen

Reconnaissance U–Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dating of gneisses, granitoids and greenstones from well-documented study areas within the Tanzania Craton indicates that: (1) ~2815–2691 Ma greenschist-amphibolite facies greenstones and associated granitoids are confined...

Full description

Bibliographic Details
Main Authors: Kabete, J., McNaughton, Neal, Groves, D., Mruma, A.
Format: Journal Article
Published: Elsevier BV 2012
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/42288
_version_ 1848756378612531200
author Kabete, J.
McNaughton, Neal
Groves, D.
Mruma, A.
author_facet Kabete, J.
McNaughton, Neal
Groves, D.
Mruma, A.
author_sort Kabete, J.
building Curtin Institutional Repository
collection Online Access
description Reconnaissance U–Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dating of gneisses, granitoids and greenstones from well-documented study areas within the Tanzania Craton indicates that: (1) ~2815–2691 Ma greenschist-amphibolite facies greenstones and associated granitoids are confined within extensive >3600 Ma granitoid–gneisses in the Central Tanzania Region; (2) greenschist-amphibolite facies greenstone rocks from the Singida-Mayamaya Terrane in the south-eastern Lake Nyanza Superterrane, Lake Victoria Region are older than 2681 Ma; (3) greenschist to lower-granulite facies granitoid–greenstone belts from the Kilindi-Handeni Superterrane, within the largely Neoproterozoic Southern East African Orogen are older than 2670 Ma; and (4) the granitoid–greenstone belts within the Dodoma Basement Superterrane, Central Tanzania Region and Kilindi-Handeni Superterrane, Southern East African Orogen are broadly coeval with ~2823–2671 Ma granitoid–greenstone belts in the Lake Nyanza Superterrane, in the Lake Victoria Region. The basement to juvenile greenstone rocks in the Central Tanzania Region includes E-W-trending orthogneisses. These comprise largely >3140 Ma diorite to granodiorite gneisses with rafts and/or tectonic enclaves of supracrustal rocks, including ∼3600 Ma fuchsitic sericite quartzite, which forms part of the ∼25 km by 5 km Simba-Nguru Hills in the Undewa-Ilangali Terrane. This quartzite contains detrital 4013–3600 Ma zircons that define ancestral cycles of protracted magmatism in their as yet undetected source terranes.In addition to the ∼2815–2670 Ma granitoids and greenstones in the >3000 Ma gneisses and granitoids within the widely accepted marginal zone of the Tanzania Craton, the Lake Nyanza Superterrane extends east into the Kilindi-Handeni Superterrane, in the largely Neoproterozoic Southern East African Orogen. In this Superterrane, Neoarchean igneous and sedimentary rocks in the Mkurumu-Magamba Terrane record ∼620–603 Ma amphibolite-granulite facies metamorphism, ∼585–575 Ma partial-melting, and emplacement of enderbitic-charnockitic granitoids. They also record a short-lived, but significant, 570–560 Ma period of exhumation and emplacement of high-grade metamorphic rocks on to basement rocks of the proto-Archean craton within the Central Tectonic Zone in the Southern East African Orogen.
first_indexed 2025-11-14T09:11:15Z
format Journal Article
id curtin-20.500.11937-42288
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:11:15Z
publishDate 2012
publisher Elsevier BV
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-422882017-09-13T15:57:41Z Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen Kabete, J. McNaughton, Neal Groves, D. Mruma, A. Southern East African Orogen Mazoka Greenstone Belt Lake Nyanza Superterrane Magambazi Central Tanzania Region Mkurumu-Magamba Terrane Reconnaissance U–Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dating of gneisses, granitoids and greenstones from well-documented study areas within the Tanzania Craton indicates that: (1) ~2815–2691 Ma greenschist-amphibolite facies greenstones and associated granitoids are confined within extensive >3600 Ma granitoid–gneisses in the Central Tanzania Region; (2) greenschist-amphibolite facies greenstone rocks from the Singida-Mayamaya Terrane in the south-eastern Lake Nyanza Superterrane, Lake Victoria Region are older than 2681 Ma; (3) greenschist to lower-granulite facies granitoid–greenstone belts from the Kilindi-Handeni Superterrane, within the largely Neoproterozoic Southern East African Orogen are older than 2670 Ma; and (4) the granitoid–greenstone belts within the Dodoma Basement Superterrane, Central Tanzania Region and Kilindi-Handeni Superterrane, Southern East African Orogen are broadly coeval with ~2823–2671 Ma granitoid–greenstone belts in the Lake Nyanza Superterrane, in the Lake Victoria Region. The basement to juvenile greenstone rocks in the Central Tanzania Region includes E-W-trending orthogneisses. These comprise largely >3140 Ma diorite to granodiorite gneisses with rafts and/or tectonic enclaves of supracrustal rocks, including ∼3600 Ma fuchsitic sericite quartzite, which forms part of the ∼25 km by 5 km Simba-Nguru Hills in the Undewa-Ilangali Terrane. This quartzite contains detrital 4013–3600 Ma zircons that define ancestral cycles of protracted magmatism in their as yet undetected source terranes.In addition to the ∼2815–2670 Ma granitoids and greenstones in the >3000 Ma gneisses and granitoids within the widely accepted marginal zone of the Tanzania Craton, the Lake Nyanza Superterrane extends east into the Kilindi-Handeni Superterrane, in the largely Neoproterozoic Southern East African Orogen. In this Superterrane, Neoarchean igneous and sedimentary rocks in the Mkurumu-Magamba Terrane record ∼620–603 Ma amphibolite-granulite facies metamorphism, ∼585–575 Ma partial-melting, and emplacement of enderbitic-charnockitic granitoids. They also record a short-lived, but significant, 570–560 Ma period of exhumation and emplacement of high-grade metamorphic rocks on to basement rocks of the proto-Archean craton within the Central Tectonic Zone in the Southern East African Orogen. 2012 Journal Article http://hdl.handle.net/20.500.11937/42288 10.1016/j.precamres.2012.06.020 Elsevier BV unknown
spellingShingle Southern East African Orogen
Mazoka Greenstone Belt
Lake Nyanza Superterrane
Magambazi
Central Tanzania Region
Mkurumu-Magamba Terrane
Kabete, J.
McNaughton, Neal
Groves, D.
Mruma, A.
Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen
title Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen
title_full Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen
title_fullStr Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen
title_full_unstemmed Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen
title_short Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen
title_sort reconnaissance shrimp u–pb zircon geochronology of the tanzania craton: evidence for neoarchean granitoid–greenstone belts in the central tanzania region and the southern east african orogen
topic Southern East African Orogen
Mazoka Greenstone Belt
Lake Nyanza Superterrane
Magambazi
Central Tanzania Region
Mkurumu-Magamba Terrane
url http://hdl.handle.net/20.500.11937/42288