Preparation and characterisation of fly ash based geopolymer mortars
Geopolymer mortars with varying levels of sand aggregate were prepared and their physical andmechanical properties studied. The geopolymer binder to sand aggregate weight ratio was varied from9 to 1. Compressive strength and Young?s modulus of the fly ash based geopolymer paste were 60 MPaand 2.27 G...
| Main Authors: | Temuujin, Jadambaa, van Riessen, Arie, MacKenzie, K. |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier
2010
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/40546 |
Similar Items
Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications
by: Rickard, William, et al.
Published: (2011)
by: Rickard, William, et al.
Published: (2011)
Effect of Nano Silica and Ultrafine Fly Ash on Compressive Strength of High Volume Fly Ash Mortar
by: Supit, S., et al.
Published: (2013)
by: Supit, S., et al.
Published: (2013)
Characterisation of various fly ashes from Australia and Mongolia and their utilisation for preparation of Geopolymers with advanced applications
by: Jadambaa, T., et al.
Published: (2012)
by: Jadambaa, T., et al.
Published: (2012)
Fly Ash Based Geopolymer Concrete with Recycled Concrete Aggregate
by: Galvin, Benjamin, et al.
Published: (2011)
by: Galvin, Benjamin, et al.
Published: (2011)
Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures
by: Shaikh, Faiz, et al.
Published: (2014)
by: Shaikh, Faiz, et al.
Published: (2014)
Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions
by: Temuujin, Jadambaa, et al.
Published: (2011)
by: Temuujin, Jadambaa, et al.
Published: (2011)
Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation
by: Temuujin, Jadambaa, et al.
Published: (2010)
by: Temuujin, Jadambaa, et al.
Published: (2010)
Strength and Water Penetrability of Fly Ash Geopolymer Conrete
by: Olivia, Monita, et al.
Published: (2011)
by: Olivia, Monita, et al.
Published: (2011)
Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition
by: Rickard, William, et al.
Published: (2012)
by: Rickard, William, et al.
Published: (2012)
Fly ash-based geopolymer concrete
by: Rangan, B. Vijaya
Published: (2008)
by: Rangan, B. Vijaya
Published: (2008)
Beneficiation of Collie fly ash for synthesis of geopolymer Part 2: Geopolymers
by: Van Riessen, Arie, et al.
Published: (2013)
by: Van Riessen, Arie, et al.
Published: (2013)
Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete
by: Hardjito, Djwantoro, et al.
Published: (2005)
by: Hardjito, Djwantoro, et al.
Published: (2005)
Low-Calcium fly ash-based geopolymer concrete: Reinforced beams and columns
by: Sumajouw, Marthin, et al.
Published: (2006)
by: Sumajouw, Marthin, et al.
Published: (2006)
Low-Calcium fly ash-based geopolymer concrete: Long-term properties
by: Wallah, Steenie, et al.
Published: (2006)
by: Wallah, Steenie, et al.
Published: (2006)
The effect of pre-treatment on the thermal performance of fly ash geopolymers
by: Rickard, William, et al.
Published: (2013)
by: Rickard, William, et al.
Published: (2013)
Thermal properties of spray-coated geopolymer-type compositions
by: Temuujin, Jadambaa, et al.
Published: (2012)
by: Temuujin, Jadambaa, et al.
Published: (2012)
Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire
by: Rickard, William, et al.
Published: (2013)
by: Rickard, William, et al.
Published: (2013)
Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2014)
by: Sarker, Prabir, et al.
Published: (2014)
Room temperature alkali activation of fly ash: The effect of Na2O/SiO2 ratio
by: Bignozzi, M., et al.
Published: (2014)
by: Bignozzi, M., et al.
Published: (2014)
Fracture behaviour of heat cured fly ash based geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2013)
by: Sarker, Prabir, et al.
Published: (2013)
Characterization of various fly ashes for preparation of geopolymers with advanced applications
by: Temuujin, J., et al.
Published: (2013)
by: Temuujin, J., et al.
Published: (2013)
Geopolymer Concrete Using Fly Ash
by: Sarker, Prabir, et al.
Published: (2014)
by: Sarker, Prabir, et al.
Published: (2014)
Effect of nano-CuO and fly ash on the properties of self-compacting mortar
by: Khotbehsara, M., et al.
Published: (2015)
by: Khotbehsara, M., et al.
Published: (2015)
Geopolymer Concrete with Recycled Concrete Aggregate
by: Galvin, Benjamin, et al.
Published: (2012)
by: Galvin, Benjamin, et al.
Published: (2012)
Durability of Fly Ash Geopolymer Concrete in a Seawater Environment
by: Olivia, Monita, et al.
Published: (2011)
by: Olivia, Monita, et al.
Published: (2011)
Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition
by: Nath, Pradip, et al.
Published: (2014)
by: Nath, Pradip, et al.
Published: (2014)
Reinforced Geopolymer Concrete after Exposure to Fire
by: Sarker, Prabir, et al.
Published: (2011)
by: Sarker, Prabir, et al.
Published: (2011)
Fire endurance of steel reinforced fly ash geopolymer concrete elements
by: Sarker, Prabir, et al.
Published: (2015)
by: Sarker, Prabir, et al.
Published: (2015)
Determination of the reactive component if fly ashes for geopolymer production using XRF and XRD
by: Williams, Ross, et al.
Published: (2010)
by: Williams, Ross, et al.
Published: (2010)
Fly ash based geopolymer concrete: A review
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Fly ash based geopolymer concrete: structural properties
by: Sarker, Prabir
Published: (2011)
by: Sarker, Prabir
Published: (2011)
An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature
by: Pan, Z., et al.
Published: (2009)
by: Pan, Z., et al.
Published: (2009)
Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature
by: Deb, Partha, et al.
Published: (2013)
by: Deb, Partha, et al.
Published: (2013)
Properties of fly ash based geopolymer for curing at ambient temperature
by: Nath, Pradip, et al.
Published: (2012)
by: Nath, Pradip, et al.
Published: (2012)
Utilization of fly ash in construction industry
by: Barbhuiya, Salim
Published: (2014)
by: Barbhuiya, Salim
Published: (2014)
Bond Behaviour of Reinforced Fly Ash-Based Geopolymer Concrete Beams
by: Chang, Ee Hui, et al.
Published: (2009)
by: Chang, Ee Hui, et al.
Published: (2009)
Bayer-geopolymers: An exploration of synergy between the alumina and geopolymer industries
by: Van Riessen, Arie, et al.
Published: (2013)
by: Van Riessen, Arie, et al.
Published: (2013)
Development of Fly Ash Based Geopolymer Concrete for Ambient Curing Condition
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Sulphate resistance of slag blended fly ash based geopolymer concrete
by: Deb, Partha, et al.
Published: (2013)
by: Deb, Partha, et al.
Published: (2013)
Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement
by: McLellan, B., et al.
Published: (2011)
by: McLellan, B., et al.
Published: (2011)
Similar Items
-
Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications
by: Rickard, William, et al.
Published: (2011) -
Effect of Nano Silica and Ultrafine Fly Ash on Compressive Strength of High Volume Fly Ash Mortar
by: Supit, S., et al.
Published: (2013) -
Characterisation of various fly ashes from Australia and Mongolia and their utilisation for preparation of Geopolymers with advanced applications
by: Jadambaa, T., et al.
Published: (2012) -
Fly Ash Based Geopolymer Concrete with Recycled Concrete Aggregate
by: Galvin, Benjamin, et al.
Published: (2011) -
Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures
by: Shaikh, Faiz, et al.
Published: (2014)